Fx Копировать
LaTeX Копировать
Толщина полой сферы – это кратчайшее расстояние между соседней и параллельной парой граней внутренней и внешней окружных поверхностей полой сферы. Проверьте FAQs
t=rOuter-SA4π-rOuter2
t - Толщина полой сферы?rOuter - Внешний радиус полой сферы?SA - Площадь поверхности полой сферы?π - постоянная Архимеда?

Пример Толщина полой сферы с учетом площади поверхности и внешнего радиуса

С ценностями
С единицами
Только пример

Вот как уравнение Толщина полой сферы с учетом площади поверхности и внешнего радиуса выглядит как с ценностями.

Вот как уравнение Толщина полой сферы с учетом площади поверхности и внешнего радиуса выглядит как с единицами.

Вот как уравнение Толщина полой сферы с учетом площади поверхности и внешнего радиуса выглядит как.

4.0602Edit=10Edit-1700Edit43.1416-10Edit2
Копировать
Сброс
Делиться
Вы здесь -

Толщина полой сферы с учетом площади поверхности и внешнего радиуса Решение

Следуйте нашему пошаговому решению о том, как рассчитать Толщина полой сферы с учетом площади поверхности и внешнего радиуса?

Первый шаг Рассмотрим формулу
t=rOuter-SA4π-rOuter2
Следующий шаг Заменить значения переменных
t=10m-17004π-10m2
Следующий шаг Замещающие значения констант
t=10m-170043.1416-10m2
Следующий шаг Подготовьтесь к оценке
t=10-170043.1416-102
Следующий шаг Оценивать
t=4.06015979776299m
Последний шаг Округление ответа
t=4.0602m

Толщина полой сферы с учетом площади поверхности и внешнего радиуса Формула Элементы

Переменные
Константы
Функции
Толщина полой сферы
Толщина полой сферы – это кратчайшее расстояние между соседней и параллельной парой граней внутренней и внешней окружных поверхностей полой сферы.
Символ: t
Измерение: ДлинаЕдиница: m
Примечание: Значение должно быть больше 0.
Внешний радиус полой сферы
Внешний радиус полой сферы — это расстояние между центром и любой точкой на окружности большей сферы полой сферы.
Символ: rOuter
Измерение: ДлинаЕдиница: m
Примечание: Значение должно быть больше 0.
Площадь поверхности полой сферы
Площадь поверхности полой сферы – это общее количество двухмерного пространства, заключенного в сферическую поверхность.
Символ: SA
Измерение: ОбластьЕдиница:
Примечание: Значение должно быть больше 0.
постоянная Архимеда
Постоянная Архимеда — это математическая константа, которая представляет собой отношение длины окружности к ее диаметру.
Символ: π
Ценить: 3.14159265358979323846264338327950288
sqrt
Функция квадратного корня — это функция, которая принимает в качестве входных данных неотрицательное число и возвращает квадратный корень заданного входного числа.
Синтаксис: sqrt(Number)

Другие формулы для поиска Толщина полой сферы

​Идти Толщина полой сферы с учетом объема и внешнего радиуса
t=rOuter-(rOuter3-3V4π)13
​Идти Толщина полой сферы с учетом площади поверхности и внутреннего радиуса
t=SA4π-rInner2-rInner
​Идти Толщина полой сферы с учетом объема и внутреннего радиуса
t=(3V4π+rInner3)13-rInner
​Идти Толщина полой сферы
t=rOuter-rInner

Как оценить Толщина полой сферы с учетом площади поверхности и внешнего радиуса?

Оценщик Толщина полой сферы с учетом площади поверхности и внешнего радиуса использует Thickness of Hollow Sphere = Внешний радиус полой сферы-sqrt(Площадь поверхности полой сферы/(4*pi)-Внешний радиус полой сферы^2) для оценки Толщина полой сферы, Толщина полой сферы с учетом формулы площади поверхности и внешнего радиуса определяется как кратчайшее расстояние между соседними и параллельными парами граней внутренней и внешней окружных поверхностей полой сферы, рассчитанное с использованием площади поверхности и внешнего радиуса полой сферы. Толщина полой сферы обозначается символом t.

Как оценить Толщина полой сферы с учетом площади поверхности и внешнего радиуса с помощью этого онлайн-оценщика? Чтобы использовать этот онлайн-оценщик для Толщина полой сферы с учетом площади поверхности и внешнего радиуса, введите Внешний радиус полой сферы (rOuter) & Площадь поверхности полой сферы (SA) и нажмите кнопку расчета.

FAQs на Толщина полой сферы с учетом площади поверхности и внешнего радиуса

По какой формуле можно найти Толщина полой сферы с учетом площади поверхности и внешнего радиуса?
Формула Толщина полой сферы с учетом площади поверхности и внешнего радиуса выражается как Thickness of Hollow Sphere = Внешний радиус полой сферы-sqrt(Площадь поверхности полой сферы/(4*pi)-Внешний радиус полой сферы^2). Вот пример: 4.06016 = 10-sqrt(1700/(4*pi)-10^2).
Как рассчитать Толщина полой сферы с учетом площади поверхности и внешнего радиуса?
С помощью Внешний радиус полой сферы (rOuter) & Площадь поверхности полой сферы (SA) мы можем найти Толщина полой сферы с учетом площади поверхности и внешнего радиуса, используя формулу - Thickness of Hollow Sphere = Внешний радиус полой сферы-sqrt(Площадь поверхности полой сферы/(4*pi)-Внешний радиус полой сферы^2). В этой формуле также используются функции постоянная Архимеда, и Квадратный корень (sqrt).
Какие еще способы расчета Толщина полой сферы?
Вот различные способы расчета Толщина полой сферы-
  • Thickness of Hollow Sphere=Outer Radius of Hollow Sphere-(Outer Radius of Hollow Sphere^3-(3*Volume of Hollow Sphere)/(4*pi))^(1/3)OpenImg
  • Thickness of Hollow Sphere=sqrt(Surface Area of Hollow Sphere/(4*pi)-Inner Radius of Hollow Sphere^2)-Inner Radius of Hollow SphereOpenImg
  • Thickness of Hollow Sphere=((3*Volume of Hollow Sphere)/(4*pi)+Inner Radius of Hollow Sphere^3)^(1/3)-Inner Radius of Hollow SphereOpenImg
.
Может ли Толщина полой сферы с учетом площади поверхности и внешнего радиуса быть отрицательным?
Нет, Толщина полой сферы с учетом площади поверхности и внешнего радиуса, измеренная в Длина не могу, будет отрицательной.
Какая единица измерения используется для измерения Толщина полой сферы с учетом площади поверхности и внешнего радиуса?
Толщина полой сферы с учетом площади поверхности и внешнего радиуса обычно измеряется с использованием Метр[m] для Длина. Миллиметр[m], километр[m], Дециметр[m] — это несколько других единиц, в которых можно измерить Толщина полой сферы с учетом площади поверхности и внешнего радиуса.
Copied!