Fx Копировать
LaTeX Копировать
Объем Курносого Додекаэдра – это общее количество трехмерного пространства, заключенного поверхностью Курносого Додекаэдра. Проверьте FAQs
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32(2rc2-0.943151259241-0.94315125924)3
V - Объем курносого додекаэдра?rc - Радиус окружности курносого додекаэдра?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?[phi] - Золотое сечение?

Пример Объем курносого додекаэдра при заданном радиусе окружности

С ценностями
С единицами
Только пример

Вот как уравнение Объем курносого додекаэдра при заданном радиусе окружности выглядит как с ценностями.

Вот как уравнение Объем курносого додекаэдра при заданном радиусе окружности выглядит как с единицами.

Вот как уравнение Объем курносого додекаэдра при заданном радиусе окружности выглядит как.

39976.0765Edit=((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6)6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)32(222Edit2-0.943151259241-0.94315125924)3
Копировать
Сброс
Делиться
Вы здесь -
HomeIcon Дом » Category математика » Category Геометрия » Category 3D геометрия » fx Объем курносого додекаэдра при заданном радиусе окружности

Объем курносого додекаэдра при заданном радиусе окружности Решение

Следуйте нашему пошаговому решению о том, как рассчитать Объем курносого додекаэдра при заданном радиусе окружности?

Первый шаг Рассмотрим формулу
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32(2rc2-0.943151259241-0.94315125924)3
Следующий шаг Заменить значения переменных
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32(222m2-0.943151259241-0.94315125924)3
Следующий шаг Замещающие значения констант
V=((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6)6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)32(222m2-0.943151259241-0.94315125924)3
Следующий шаг Подготовьтесь к оценке
V=((12((31.618)+1))(((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)-(((361.618)+7)((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)))-((531.618)+6)6(3-((1.6182+1.618-5272)13+(1.6182-1.618-5272)13)2)32(2222-0.943151259241-0.94315125924)3
Следующий шаг Оценивать
V=39976.0765151654
Последний шаг Округление ответа
V=39976.0765

Объем курносого додекаэдра при заданном радиусе окружности Формула Элементы

Переменные
Константы
Функции
Объем курносого додекаэдра
Объем Курносого Додекаэдра – это общее количество трехмерного пространства, заключенного поверхностью Курносого Додекаэдра.
Символ: V
Измерение: ОбъемЕдиница:
Примечание: Значение должно быть больше 0.
Радиус окружности курносого додекаэдра
Радиус окружности курносого додекаэдра — это радиус сферы, содержащей курносый додекаэдр таким образом, что все вершины лежат на сфере.
Символ: rc
Измерение: ДлинаЕдиница: m
Примечание: Значение должно быть больше 0.
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
Золотое сечение
Золотое сечение возникает, когда отношение двух чисел равно отношению их суммы к большему из двух чисел.
Символ: [phi]
Ценить: 1.61803398874989484820458683436563811
sqrt
Функция квадратного корня — это функция, которая принимает в качестве входных данных неотрицательное число и возвращает квадратный корень заданного входного числа.
Синтаксис: sqrt(Number)

Другие формулы для поиска Объем курносого додекаэдра

​Идти Объем курносого додекаэдра
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32le3
​Идти Объем курносого додекаэдра с учетом общей площади поверхности
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32(TSA(203)+(325+(105)))3
​Идти Объем курносого додекаэдра с учетом радиуса средней сферы
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32(2rm11-0.94315125924)3
​Идти Объем курносого додекаэдра при заданном отношении поверхности к объему
V=((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32(((203)+(325+(105)))6(3-(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)32RA/V(((12((3[phi])+1))((([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)2)-(((36[phi])+7)(([phi]2+[phi]-5272)13+([phi]2-[phi]-5272)13)))-((53[phi])+6)))3

Как оценить Объем курносого додекаэдра при заданном радиусе окружности?

Оценщик Объем курносого додекаэдра при заданном радиусе окружности использует Volume of Snub Dodecahedron = (((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*((2*Радиус окружности курносого додекаэдра)/sqrt((2-0.94315125924)/(1-0.94315125924)))^3 для оценки Объем курносого додекаэдра, Объем курносого додекаэдра с учетом формулы радиуса окружности определяется как общее количество трехмерного пространства, заключенного в поверхность курносого додекаэдра, и рассчитывается с использованием радиуса описанной окружности курносого додекаэдра. Объем курносого додекаэдра обозначается символом V.

Как оценить Объем курносого додекаэдра при заданном радиусе окружности с помощью этого онлайн-оценщика? Чтобы использовать этот онлайн-оценщик для Объем курносого додекаэдра при заданном радиусе окружности, введите Радиус окружности курносого додекаэдра (rc) и нажмите кнопку расчета.

FAQs на Объем курносого додекаэдра при заданном радиусе окружности

По какой формуле можно найти Объем курносого додекаэдра при заданном радиусе окружности?
Формула Объем курносого додекаэдра при заданном радиусе окружности выражается как Volume of Snub Dodecahedron = (((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*((2*Радиус окружности курносого додекаэдра)/sqrt((2-0.94315125924)/(1-0.94315125924)))^3. Вот пример: 39976.08 = (((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*((2*22)/sqrt((2-0.94315125924)/(1-0.94315125924)))^3.
Как рассчитать Объем курносого додекаэдра при заданном радиусе окружности?
С помощью Радиус окружности курносого додекаэдра (rc) мы можем найти Объем курносого додекаэдра при заданном радиусе окружности, используя формулу - Volume of Snub Dodecahedron = (((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*((2*Радиус окружности курносого додекаэдра)/sqrt((2-0.94315125924)/(1-0.94315125924)))^3. В этой формуле также используются функции Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, Золотое сечение, константа(ы) и Квадратный корень (sqrt).
Какие еще способы расчета Объем курносого додекаэдра?
Вот различные способы расчета Объем курносого додекаэдра-
  • Volume of Snub Dodecahedron=(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*Edge Length of Snub Dodecahedron^3OpenImg
  • Volume of Snub Dodecahedron=(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*(sqrt(Total Surface Area of Snub Dodecahedron/((20*sqrt(3))+(3*sqrt(25+(10*sqrt(5)))))))^3OpenImg
  • Volume of Snub Dodecahedron=(((12*((3*[phi])+1))*((([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)-(((36*[phi])+7)*(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))))-((53*[phi])+6))/(6*(3-(([phi]/2+sqrt([phi]-5/27)/2)^(1/3)+([phi]/2-sqrt([phi]-5/27)/2)^(1/3))^2)^(3/2))*((2*Midsphere Radius of Snub Dodecahedron)/sqrt(1/(1-0.94315125924)))^3OpenImg
.
Может ли Объем курносого додекаэдра при заданном радиусе окружности быть отрицательным?
Нет, Объем курносого додекаэдра при заданном радиусе окружности, измеренная в Объем не могу, будет отрицательной.
Какая единица измерения используется для измерения Объем курносого додекаэдра при заданном радиусе окружности?
Объем курносого додекаэдра при заданном радиусе окружности обычно измеряется с использованием Кубический метр[m³] для Объем. кубический сантиметр[m³], кубический миллиметр[m³], Литр[m³] — это несколько других единиц, в которых можно измерить Объем курносого додекаэдра при заданном радиусе окружности.
Copied!