Fx cópia de
LaTeX cópia de
Diagonal Curta do Quadrilátero de Arco Circular é uma linha reta que une dois cantos não adjacentes de um Quadrângulo de Arco Circular. Verifique FAQs
dShort=2(2-1)P2π
dShort - Diagonal Curta do Quadrilátero do Arco Circular?P - Perímetro do Quadrilátero do Arco Circular?π - Constante de Arquimedes?

Exemplo de Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro

Com valores
Com unidades
Apenas exemplo

Esta é a aparência da equação Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro com valores.

Esta é a aparência da equação Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro com unidades.

Esta é a aparência da equação Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro.

12.5256Edit=2(2-1)95Edit23.1416
cópia de
Reiniciar
Compartilhar
Você está aqui -
HomeIcon Lar » Category Matemática » Category Geometria » Category Geometria 2D » fx Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro

Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro Solução

Siga nossa solução passo a passo sobre como calcular Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro?

Primeiro passo Considere a fórmula
dShort=2(2-1)P2π
Próxima Etapa Substituir valores de variáveis
dShort=2(2-1)95m2π
Próxima Etapa Valores substitutos de constantes
dShort=2(2-1)95m23.1416
Próxima Etapa Prepare-se para avaliar
dShort=2(2-1)9523.1416
Próxima Etapa Avalie
dShort=12.5255858300024m
Último passo Resposta de arredondamento
dShort=12.5256m

Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro Fórmula Elementos

Variáveis
Constantes
Funções
Diagonal Curta do Quadrilátero do Arco Circular
Diagonal Curta do Quadrilátero de Arco Circular é uma linha reta que une dois cantos não adjacentes de um Quadrângulo de Arco Circular.
Símbolo: dShort
Medição: ComprimentoUnidade: m
Observação: O valor deve ser maior que 0.
Perímetro do Quadrilátero do Arco Circular
Perímetro do quadrilátero do arco circular é a distância total ao redor da borda do quadrilátero do arco circular.
Símbolo: P
Medição: ComprimentoUnidade: m
Observação: O valor deve ser maior que 0.
Constante de Arquimedes
A constante de Arquimedes é uma constante matemática que representa a razão entre a circunferência de um círculo e seu diâmetro.
Símbolo: π
Valor: 3.14159265358979323846264338327950288
sqrt
Uma função de raiz quadrada é uma função que recebe um número não negativo como entrada e retorna a raiz quadrada do número de entrada fornecido.
Sintaxe: sqrt(Number)

Outras fórmulas para encontrar Diagonal Curta do Quadrilátero do Arco Circular

​Ir Diagonal Curta do Quadrilátero do Arco Circular
dShort=2(2-1)rCircle
​Ir Diagonal Curta do Quadrângulo do Arco Circular dada a Diagonal Longa
dShort=2(2-1)dLong2
​Ir Diagonal Curta do Quadrilátero do Arco Circular dada Área
dShort=2(2-1)A4-π

Como avaliar Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro?

O avaliador Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro usa Short Diagonal of Circular Arc Quadrangle = 2*(sqrt(2)-1)*Perímetro do Quadrilátero do Arco Circular/(2*pi) para avaliar Diagonal Curta do Quadrilátero do Arco Circular, A Diagonal Curta do Quadrilátero do Arco Circular dada a fórmula do Perímetro é definida como a linha reta que une dois cantos opostos do Quadrilátero do Arco Circular, calculada usando seu perímetro. Diagonal Curta do Quadrilátero do Arco Circular é denotado pelo símbolo dShort.

Como avaliar Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro usando este avaliador online? Para usar este avaliador online para Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro, insira Perímetro do Quadrilátero do Arco Circular (P) e clique no botão calcular.

FAQs sobre Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro

Qual é a fórmula para encontrar Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro?
A fórmula de Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro é expressa como Short Diagonal of Circular Arc Quadrangle = 2*(sqrt(2)-1)*Perímetro do Quadrilátero do Arco Circular/(2*pi). Aqui está um exemplo: 12.52559 = 2*(sqrt(2)-1)*95/(2*pi).
Como calcular Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro?
Com Perímetro do Quadrilátero do Arco Circular (P) podemos encontrar Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro usando a fórmula - Short Diagonal of Circular Arc Quadrangle = 2*(sqrt(2)-1)*Perímetro do Quadrilátero do Arco Circular/(2*pi). Esta fórmula também usa funções Constante de Arquimedes e Raiz quadrada (sqrt).
Quais são as outras maneiras de calcular Diagonal Curta do Quadrilátero do Arco Circular?
Aqui estão as diferentes maneiras de calcular Diagonal Curta do Quadrilátero do Arco Circular-
  • Short Diagonal of Circular Arc Quadrangle=2*(sqrt(2)-1)*Radius of Circle of Circular Arc QuadrangleOpenImg
  • Short Diagonal of Circular Arc Quadrangle=2*(sqrt(2)-1)*Long Diagonal of Circular Arc Quadrangle/2OpenImg
  • Short Diagonal of Circular Arc Quadrangle=2*(sqrt(2)-1)*sqrt(Area of Circular Arc Quadrangle/(4-pi))OpenImg
O Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro pode ser negativo?
Não, o Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro, medido em Comprimento não pode ser negativo.
Qual unidade é usada para medir Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro?
Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro geralmente é medido usando Metro[m] para Comprimento. Milímetro[m], Quilômetro[m], Decímetro[m] são as poucas outras unidades nas quais Diagonal Curta do Quadrângulo do Arco Circular dado Perímetro pode ser medido.
Copied!