Fx Kopiuj
LaTeX Kopiuj
Stosunek powierzchni do objętości równoległościanu to liczbowy stosunek całkowitego pola powierzchni równoległościanu do objętości równoległościanu. Sprawdź FAQs
RA/V=2((SaSbsin(∠γ))+(SaScsin(∠β))+(SbScsin(∠α)))SaSbSc1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)
RA/V - Stosunek powierzchni do objętości równoległościanu?Sa - Strona A równoległościanu?Sb - Strona B równoległościanu?∠γ - Kąt Gamma równoległościanu?Sc - Bok C równoległościanu?∠β - Kąt Beta równoległościanu?∠α - Kąt alfa równoległościanu?

Przykład Stosunek powierzchni do objętości równoległościanu

Z wartościami
Z jednostkami
Tylko przykład

Oto jak równanie Stosunek powierzchni do objętości równoległościanu wygląda jak z Wartościami.

Oto jak równanie Stosunek powierzchni do objętości równoległościanu wygląda jak z Jednostkami.

Oto jak równanie Stosunek powierzchni do objętości równoległościanu wygląda jak.

0.5404Edit=2((30Edit20Editsin(75Edit))+(30Edit10Editsin(60Edit))+(20Edit10Editsin(45Edit)))30Edit20Edit10Edit1+(2cos(45Edit)cos(60Edit)cos(75Edit))-(cos(45Edit)2+cos(60Edit)2+cos(75Edit)2)
Rozwiązanie
Kopiuj
Resetowanie
Udział
Jesteś tutaj -
HomeIcon Dom » Category Matematyka » Category Geometria » Category Geometria 3D » fx Stosunek powierzchni do objętości równoległościanu

Stosunek powierzchni do objętości równoległościanu Rozwiązanie

Postępuj zgodnie z naszym rozwiązaniem krok po kroku, jak obliczyć Stosunek powierzchni do objętości równoległościanu?

Pierwszy krok Rozważ formułę
RA/V=2((SaSbsin(∠γ))+(SaScsin(∠β))+(SbScsin(∠α)))SaSbSc1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)
Następny krok Zastępcze wartości zmiennych
RA/V=2((30m20msin(75°))+(30m10msin(60°))+(20m10msin(45°)))30m20m10m1+(2cos(45°)cos(60°)cos(75°))-(cos(45°)2+cos(60°)2+cos(75°)2)
Następny krok Konwersja jednostek
RA/V=2((30m20msin(1.309rad))+(30m10msin(1.0472rad))+(20m10msin(0.7854rad)))30m20m10m1+(2cos(0.7854rad)cos(1.0472rad)cos(1.309rad))-(cos(0.7854rad)2+cos(1.0472rad)2+cos(1.309rad)2)
Następny krok Przygotuj się do oceny
RA/V=2((3020sin(1.309))+(3010sin(1.0472))+(2010sin(0.7854)))3020101+(2cos(0.7854)cos(1.0472)cos(1.309))-(cos(0.7854)2+cos(1.0472)2+cos(1.309)2)
Następny krok Oceniać
RA/V=0.540376822129579m⁻¹
Ostatni krok Zaokrąglona odpowiedź
RA/V=0.5404m⁻¹

Stosunek powierzchni do objętości równoległościanu Formuła Elementy

Zmienne
Funkcje
Stosunek powierzchni do objętości równoległościanu
Stosunek powierzchni do objętości równoległościanu to liczbowy stosunek całkowitego pola powierzchni równoległościanu do objętości równoległościanu.
Symbol: RA/V
Pomiar: Odwrotna długośćJednostka: m⁻¹
Notatka: Wartość powinna być większa niż 0.
Strona A równoległościanu
Bok A równoległościanu to długość dowolnego z trzech boków od dowolnego ustalonego wierzchołka równoległościanu.
Symbol: Sa
Pomiar: DługośćJednostka: m
Notatka: Wartość powinna być większa niż 0.
Strona B równoległościanu
Bok B równoległościanu to długość dowolnego z trzech boków od dowolnego stałego wierzchołka równoległościanu.
Symbol: Sb
Pomiar: DługośćJednostka: m
Notatka: Wartość powinna być większa niż 0.
Kąt Gamma równoległościanu
Kąt Gamma równoległościanu to kąt utworzony przez bok A i bok B na dowolnym z dwóch ostrych końców równoległościanu.
Symbol: ∠γ
Pomiar: KątJednostka: °
Notatka: Wartość powinna mieścić się w przedziale od 0 do 180.
Bok C równoległościanu
Bok C równoległościanu to długość dowolnego z trzech boków od dowolnego ustalonego wierzchołka równoległościanu.
Symbol: Sc
Pomiar: DługośćJednostka: m
Notatka: Wartość powinna być większa niż 0.
Kąt Beta równoległościanu
Kąt Beta równoległościanu to kąt utworzony przez bok A i bok C na dowolnym z dwóch ostrych końców równoległościanu.
Symbol: ∠β
Pomiar: KątJednostka: °
Notatka: Wartość powinna mieścić się w przedziale od 0 do 180.
Kąt alfa równoległościanu
Kąt alfa równoległościanu to kąt utworzony przez bok B i bok C na dowolnym z dwóch ostrych końców równoległościanu.
Symbol: ∠α
Pomiar: KątJednostka: °
Notatka: Wartość powinna mieścić się w przedziale od 0 do 180.
sin
Sinus jest funkcją trygonometryczną opisującą stosunek długości przeciwległego boku trójkąta prostokątnego do długości przeciwprostokątnej.
Składnia: sin(Angle)
cos
Cosinus kąta to stosunek przyprostokątnej przylegającej do kąta do przeciwprostokątnej trójkąta.
Składnia: cos(Angle)
sqrt
Funkcja pierwiastka kwadratowego to funkcja, która przyjmuje jako dane wejściowe liczbę nieujemną i zwraca pierwiastek kwadratowy podanej liczby wejściowej.
Składnia: sqrt(Number)

Inne formuły do znalezienia Stosunek powierzchni do objętości równoległościanu

​Iść Stosunek powierzchni do objętości równoległościanu przy danej objętości, boku A i boku C
RA/V=2(Vsin(∠γ)Sc1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)+(SaScsin(∠β))+Vsin(∠α)Sa1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2))V
​Iść Stosunek powierzchni do objętości równoległościanu przy danej objętości, boku B i boku C
RA/V=2(Vsin(∠γ)Sc1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)+Vsin(∠β)Sb1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)+(SbScsin(∠α)))V

Jak ocenić Stosunek powierzchni do objętości równoległościanu?

Ewaluator Stosunek powierzchni do objętości równoległościanu używa Surface to Volume Ratio of Parallelepiped = (2*((Strona A równoległościanu*Strona B równoległościanu*sin(Kąt Gamma równoległościanu))+(Strona A równoległościanu*Bok C równoległościanu*sin(Kąt Beta równoległościanu))+(Strona B równoległościanu*Bok C równoległościanu*sin(Kąt alfa równoległościanu))))/(Strona A równoległościanu*Strona B równoległościanu*Bok C równoległościanu*sqrt(1+(2*cos(Kąt alfa równoległościanu)*cos(Kąt Beta równoległościanu)*cos(Kąt Gamma równoległościanu))-(cos(Kąt alfa równoległościanu)^2+cos(Kąt Beta równoległościanu)^2+cos(Kąt Gamma równoległościanu)^2))) do oceny Stosunek powierzchni do objętości równoległościanu, Stosunek powierzchni do objętości równoległościanu jest zdefiniowany jako liczbowy stosunek całkowitej powierzchni równoległościanu do objętości równoległościanu. Stosunek powierzchni do objętości równoległościanu jest oznaczona symbolem RA/V.

Jak ocenić Stosunek powierzchni do objętości równoległościanu za pomocą tego ewaluatora online? Aby skorzystać z tego narzędzia do oceny online dla Stosunek powierzchni do objętości równoległościanu, wpisz Strona A równoległościanu (Sa), Strona B równoległościanu (Sb), Kąt Gamma równoległościanu (∠γ), Bok C równoległościanu (Sc), Kąt Beta równoległościanu (∠β) & Kąt alfa równoległościanu (∠α) i naciśnij przycisk Oblicz.

FAQs NA Stosunek powierzchni do objętości równoległościanu

Jaki jest wzór na znalezienie Stosunek powierzchni do objętości równoległościanu?
Formuła Stosunek powierzchni do objętości równoległościanu jest wyrażona jako Surface to Volume Ratio of Parallelepiped = (2*((Strona A równoległościanu*Strona B równoległościanu*sin(Kąt Gamma równoległościanu))+(Strona A równoległościanu*Bok C równoległościanu*sin(Kąt Beta równoległościanu))+(Strona B równoległościanu*Bok C równoległościanu*sin(Kąt alfa równoległościanu))))/(Strona A równoległościanu*Strona B równoległościanu*Bok C równoległościanu*sqrt(1+(2*cos(Kąt alfa równoległościanu)*cos(Kąt Beta równoległościanu)*cos(Kąt Gamma równoległościanu))-(cos(Kąt alfa równoległościanu)^2+cos(Kąt Beta równoległościanu)^2+cos(Kąt Gamma równoległościanu)^2))). Oto przykład: 0.540377 = (2*((30*20*sin(1.3089969389955))+(30*10*sin(1.0471975511964))+(20*10*sin(0.785398163397301))))/(30*20*10*sqrt(1+(2*cos(0.785398163397301)*cos(1.0471975511964)*cos(1.3089969389955))-(cos(0.785398163397301)^2+cos(1.0471975511964)^2+cos(1.3089969389955)^2))).
Jak obliczyć Stosunek powierzchni do objętości równoległościanu?
Dzięki Strona A równoległościanu (Sa), Strona B równoległościanu (Sb), Kąt Gamma równoległościanu (∠γ), Bok C równoległościanu (Sc), Kąt Beta równoległościanu (∠β) & Kąt alfa równoległościanu (∠α) możemy znaleźć Stosunek powierzchni do objętości równoległościanu za pomocą formuły - Surface to Volume Ratio of Parallelepiped = (2*((Strona A równoległościanu*Strona B równoległościanu*sin(Kąt Gamma równoległościanu))+(Strona A równoległościanu*Bok C równoległościanu*sin(Kąt Beta równoległościanu))+(Strona B równoległościanu*Bok C równoległościanu*sin(Kąt alfa równoległościanu))))/(Strona A równoległościanu*Strona B równoległościanu*Bok C równoległościanu*sqrt(1+(2*cos(Kąt alfa równoległościanu)*cos(Kąt Beta równoległościanu)*cos(Kąt Gamma równoległościanu))-(cos(Kąt alfa równoległościanu)^2+cos(Kąt Beta równoległościanu)^2+cos(Kąt Gamma równoległościanu)^2))). W tej formule zastosowano także funkcje Sinus (grzech)Cosinus (cos), Pierwiastek kwadratowy (sqrt).
Jakie są inne sposoby obliczenia Stosunek powierzchni do objętości równoległościanu?
Oto różne sposoby obliczania Stosunek powierzchni do objętości równoległościanu-
  • Surface to Volume Ratio of Parallelepiped=(2*((Volume of Parallelepiped*sin(Angle Gamma of Parallelepiped))/(Side C of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Side A of Parallelepiped*Side C of Parallelepiped*sin(Angle Beta of Parallelepiped))+(Volume of Parallelepiped*sin(Angle Alpha of Parallelepiped))/(Side A of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))))/Volume of ParallelepipedOpenImg
  • Surface to Volume Ratio of Parallelepiped=(2*((Volume of Parallelepiped*sin(Angle Gamma of Parallelepiped))/(Side C of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Volume of Parallelepiped*sin(Angle Beta of Parallelepiped))/(Side B of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Side B of Parallelepiped*Side C of Parallelepiped*sin(Angle Alpha of Parallelepiped))))/Volume of ParallelepipedOpenImg
  • Surface to Volume Ratio of Parallelepiped=(2*((Side A of Parallelepiped*Side B of Parallelepiped*sin(Angle Gamma of Parallelepiped))+(Volume of Parallelepiped*sin(Angle Beta of Parallelepiped))/(Side B of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Volume of Parallelepiped*sin(Angle Alpha of Parallelepiped))/(Side A of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))))/Volume of ParallelepipedOpenImg
Czy Stosunek powierzchni do objętości równoległościanu może być ujemna?
NIE, Stosunek powierzchni do objętości równoległościanu zmierzona w Odwrotna długość Nie mogę będzie ujemna.
Jaka jednostka jest używana do pomiaru Stosunek powierzchni do objętości równoległościanu?
Wartość Stosunek powierzchni do objętości równoległościanu jest zwykle mierzona przy użyciu zmiennej 1 na metr[m⁻¹] dla wartości Odwrotna długość. 1 / kilometr[m⁻¹], 1 / mila[m⁻¹], 1 / Yard[m⁻¹] to kilka innych jednostek, w których można zmierzyć Stosunek powierzchni do objętości równoległościanu.
Copied!