Fx Kopiuj
LaTeX Kopiuj
Stosunek powierzchni do objętości półkuli to liczbowy stosunek całkowitego pola powierzchni półkuli do objętości półkuli. Sprawdź FAQs
RA/V=92TSA3π
RA/V - Stosunek powierzchni do objętości półkuli?TSA - Całkowita powierzchnia półkuli?π - Stała Archimedesa?

Przykład Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni

Z wartościami
Z jednostkami
Tylko przykład

Oto jak równanie Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni wygląda jak z Wartościami.

Oto jak równanie Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni wygląda jak z Jednostkami.

Oto jak równanie Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni wygląda jak.

0.9012Edit=92235Edit33.1416
Rozwiązanie
Kopiuj
Resetowanie
Udział
Jesteś tutaj -

Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni Rozwiązanie

Postępuj zgodnie z naszym rozwiązaniem krok po kroku, jak obliczyć Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni?

Pierwszy krok Rozważ formułę
RA/V=92TSA3π
Następny krok Zastępcze wartości zmiennych
RA/V=922353π
Następny krok Zastępcze wartości stałych
RA/V=9223533.1416
Następny krok Przygotuj się do oceny
RA/V=9223533.1416
Następny krok Oceniać
RA/V=0.901185398323455m⁻¹
Ostatni krok Zaokrąglona odpowiedź
RA/V=0.9012m⁻¹

Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni Formuła Elementy

Zmienne
Stałe
Funkcje
Stosunek powierzchni do objętości półkuli
Stosunek powierzchni do objętości półkuli to liczbowy stosunek całkowitego pola powierzchni półkuli do objętości półkuli.
Symbol: RA/V
Pomiar: Odwrotna długośćJednostka: m⁻¹
Notatka: Wartość powinna być większa niż 0.
Całkowita powierzchnia półkuli
Całkowite pole powierzchni półkuli to wielkość płaszczyzny zamkniętej na całej powierzchni półkuli.
Symbol: TSA
Pomiar: ObszarJednostka:
Notatka: Wartość powinna być większa niż 0.
Stała Archimedesa
Stała Archimedesa jest stałą matematyczną przedstawiającą stosunek obwodu koła do jego średnicy.
Symbol: π
Wartość: 3.14159265358979323846264338327950288
sqrt
Funkcja pierwiastka kwadratowego to funkcja, która przyjmuje jako dane wejściowe liczbę nieujemną i zwraca pierwiastek kwadratowy podanej liczby wejściowej.
Składnia: sqrt(Number)

Inne formuły do znalezienia Stosunek powierzchni do objętości półkuli

​Iść Stosunek powierzchni do objętości półkuli
RA/V=92r
​Iść Stosunek powierzchni do objętości półkuli o danej średnicy
RA/V=9D
​Iść Stosunek powierzchni do objętości półkuli przy danym zakrzywionym polu powierzchni
RA/V=92CSA2π
​Iść Stosunek powierzchni do objętości półkuli przy danej objętości
RA/V=92(3V2π)13

Jak ocenić Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni?

Ewaluator Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni używa Surface to Volume Ratio of Hemisphere = 9/(2*sqrt(Całkowita powierzchnia półkuli/(3*pi))) do oceny Stosunek powierzchni do objętości półkuli, Stosunek powierzchni do objętości półkuli na podstawie wzoru na całkowite pole powierzchni jest zdefiniowany jako liczbowy stosunek całkowitej powierzchni półkuli do objętości półkuli i obliczany na podstawie całkowitego pola powierzchni półkuli. Stosunek powierzchni do objętości półkuli jest oznaczona symbolem RA/V.

Jak ocenić Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni za pomocą tego ewaluatora online? Aby skorzystać z tego narzędzia do oceny online dla Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni, wpisz Całkowita powierzchnia półkuli (TSA) i naciśnij przycisk Oblicz.

FAQs NA Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni

Jaki jest wzór na znalezienie Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni?
Formuła Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni jest wyrażona jako Surface to Volume Ratio of Hemisphere = 9/(2*sqrt(Całkowita powierzchnia półkuli/(3*pi))). Oto przykład: 0.901185 = 9/(2*sqrt(235/(3*pi))).
Jak obliczyć Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni?
Dzięki Całkowita powierzchnia półkuli (TSA) możemy znaleźć Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni za pomocą formuły - Surface to Volume Ratio of Hemisphere = 9/(2*sqrt(Całkowita powierzchnia półkuli/(3*pi))). W tej formule używane są także funkcje Stała Archimedesa i Pierwiastek kwadratowy (sqrt).
Jakie są inne sposoby obliczenia Stosunek powierzchni do objętości półkuli?
Oto różne sposoby obliczania Stosunek powierzchni do objętości półkuli-
  • Surface to Volume Ratio of Hemisphere=9/(2*Radius of Hemisphere)OpenImg
  • Surface to Volume Ratio of Hemisphere=9/Diameter of HemisphereOpenImg
  • Surface to Volume Ratio of Hemisphere=9/(2*sqrt(Curved Surface Area of Hemisphere/(2*pi)))OpenImg
Czy Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni może być ujemna?
NIE, Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni zmierzona w Odwrotna długość Nie mogę będzie ujemna.
Jaka jednostka jest używana do pomiaru Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni?
Wartość Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni jest zwykle mierzona przy użyciu zmiennej 1 na metr[m⁻¹] dla wartości Odwrotna długość. 1 / kilometr[m⁻¹], 1 / mila[m⁻¹], 1 / Yard[m⁻¹] to kilka innych jednostek, w których można zmierzyć Stosunek powierzchni do objętości półkuli przy danym całkowitym polu powierzchni.
Copied!