Fx Kopiuj
LaTeX Kopiuj
Przekątna na trzech bokach sześciokąta to linia prosta łącząca dwa niesąsiadujące wierzchołki na trzech bokach sześciokąta. Sprawdź FAQs
d3=d8sin(3π16)
d3 - Przekątna na trzech bokach sześciokąta?d8 - Przekątna przez osiem boków sześciokąta?π - Stała Archimedesa?

Przykład Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach

Z wartościami
Z jednostkami
Tylko przykład

Oto jak równanie Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach wygląda jak z Wartościami.

Oto jak równanie Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach wygląda jak z Jednostkami.

Oto jak równanie Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach wygląda jak.

14.4448Edit=26Editsin(33.141616)
Rozwiązanie
Kopiuj
Resetowanie
Udział
Jesteś tutaj -

Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach Rozwiązanie

Postępuj zgodnie z naszym rozwiązaniem krok po kroku, jak obliczyć Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach?

Pierwszy krok Rozważ formułę
d3=d8sin(3π16)
Następny krok Zastępcze wartości zmiennych
d3=26msin(3π16)
Następny krok Zastępcze wartości stałych
d3=26msin(33.141616)
Następny krok Przygotuj się do oceny
d3=26sin(33.141616)
Następny krok Oceniać
d3=14.4448260585097m
Ostatni krok Zaokrąglona odpowiedź
d3=14.4448m

Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach Formuła Elementy

Zmienne
Stałe
Funkcje
Przekątna na trzech bokach sześciokąta
Przekątna na trzech bokach sześciokąta to linia prosta łącząca dwa niesąsiadujące wierzchołki na trzech bokach sześciokąta.
Symbol: d3
Pomiar: DługośćJednostka: m
Notatka: Wartość powinna być większa niż 0.
Przekątna przez osiem boków sześciokąta
Przekątna na ośmiu bokach sześciokąta to linia prosta łącząca dwa niesąsiadujące wierzchołki na ośmiu bokach sześciokąta.
Symbol: d8
Pomiar: DługośćJednostka: m
Notatka: Wartość powinna być większa niż 0.
Stała Archimedesa
Stała Archimedesa jest stałą matematyczną przedstawiającą stosunek obwodu koła do jego średnicy.
Symbol: π
Wartość: 3.14159265358979323846264338327950288
sin
Sinus jest funkcją trygonometryczną opisującą stosunek długości przeciwległego boku trójkąta prostokątnego do długości przeciwprostokątnej.
Składnia: sin(Angle)

Inne formuły do znalezienia Przekątna na trzech bokach sześciokąta

​Iść Przekątna sześciokąta na trzech bokach
d3=sin(3π16)sin(π16)S
​Iść Przekątna sześciokąta na trzech bokach przy danej wysokości
d3=hsin(3π16)sin(7π16)
​Iść Przekątna sześciokąta na trzech bokach danego obszaru
d3=A4cot(π16)sin(3π16)sin(π16)
​Iść Przekątna szesnastokąta w poprzek trzech boków o danym obwodzie
d3=sin(3π16)sin(π16)P16

Jak ocenić Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach?

Ewaluator Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach używa Diagonal across Three Sides of Hexadecagon = Przekątna przez osiem boków sześciokąta*sin((3*pi)/16) do oceny Przekątna na trzech bokach sześciokąta, Przekątna sześciokąta na trzech bokach, biorąc pod uwagę formułę Przekątna na ośmiu bokach, jest zdefiniowana jako linia prosta łącząca dwa niesąsiadujące wierzchołki na trzech bokach szesnastokąta, obliczona na podstawie przekątnej na ośmiu bokach. Przekątna na trzech bokach sześciokąta jest oznaczona symbolem d3.

Jak ocenić Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach za pomocą tego ewaluatora online? Aby skorzystać z tego narzędzia do oceny online dla Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach, wpisz Przekątna przez osiem boków sześciokąta (d8) i naciśnij przycisk Oblicz.

FAQs NA Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach

Jaki jest wzór na znalezienie Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach?
Formuła Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach jest wyrażona jako Diagonal across Three Sides of Hexadecagon = Przekątna przez osiem boków sześciokąta*sin((3*pi)/16). Oto przykład: 14.44483 = 26*sin((3*pi)/16).
Jak obliczyć Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach?
Dzięki Przekątna przez osiem boków sześciokąta (d8) możemy znaleźć Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach za pomocą formuły - Diagonal across Three Sides of Hexadecagon = Przekątna przez osiem boków sześciokąta*sin((3*pi)/16). W tej formule używane są także funkcje Stała Archimedesa i Sinus (grzech).
Jakie są inne sposoby obliczenia Przekątna na trzech bokach sześciokąta?
Oto różne sposoby obliczania Przekątna na trzech bokach sześciokąta-
  • Diagonal across Three Sides of Hexadecagon=sin((3*pi)/16)/sin(pi/16)*Side of HexadecagonOpenImg
  • Diagonal across Three Sides of Hexadecagon=Height of Hexadecagon*sin((3*pi)/16)/sin((7*pi)/16)OpenImg
  • Diagonal across Three Sides of Hexadecagon=sqrt(Area of Hexadecagon/(4*cot(pi/16)))*sin((3*pi)/16)/sin(pi/16)OpenImg
Czy Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach może być ujemna?
NIE, Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach zmierzona w Długość Nie mogę będzie ujemna.
Jaka jednostka jest używana do pomiaru Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach?
Wartość Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach jest zwykle mierzona przy użyciu zmiennej Metr[m] dla wartości Długość. Milimetr[m], Kilometr[m], Decymetr[m] to kilka innych jednostek, w których można zmierzyć Przekątna sześciokąta na trzech bokach, biorąc pod uwagę przekątną na ośmiu bokach.
Copied!