Fx Kopiuj
LaTeX Kopiuj
Objętość równoległościanu to całkowita ilość trójwymiarowej przestrzeni zamkniętej przez powierzchnię równoległościanu. Sprawdź FAQs
V=SbScTSA2-SbScsin(∠α)Sbsin(∠γ)+Scsin(∠β)1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)
V - Objętość równoległościanów?Sb - Strona B równoległościanu?Sc - Bok C równoległościanu?TSA - Całkowita powierzchnia równoległościanu?∠α - Kąt alfa równoległościanu?∠γ - Kąt Gamma równoległościanu?∠β - Kąt Beta równoległościanu?

Przykład Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C

Z wartościami
Z jednostkami
Tylko przykład

Oto jak równanie Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C wygląda jak z Wartościami.

Oto jak równanie Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C wygląda jak z Jednostkami.

Oto jak równanie Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C wygląda jak.

3626.6094Edit=20Edit10Edit1960Edit2-20Edit10Editsin(45Edit)20Editsin(75Edit)+10Editsin(60Edit)1+(2cos(45Edit)cos(60Edit)cos(75Edit))-(cos(45Edit)2+cos(60Edit)2+cos(75Edit)2)
Rozwiązanie
Kopiuj
Resetowanie
Udział
Jesteś tutaj -

Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C Rozwiązanie

Postępuj zgodnie z naszym rozwiązaniem krok po kroku, jak obliczyć Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C?

Pierwszy krok Rozważ formułę
V=SbScTSA2-SbScsin(∠α)Sbsin(∠γ)+Scsin(∠β)1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)
Następny krok Zastępcze wartości zmiennych
V=20m10m19602-20m10msin(45°)20msin(75°)+10msin(60°)1+(2cos(45°)cos(60°)cos(75°))-(cos(45°)2+cos(60°)2+cos(75°)2)
Następny krok Konwersja jednostek
V=20m10m19602-20m10msin(0.7854rad)20msin(1.309rad)+10msin(1.0472rad)1+(2cos(0.7854rad)cos(1.0472rad)cos(1.309rad))-(cos(0.7854rad)2+cos(1.0472rad)2+cos(1.309rad)2)
Następny krok Przygotuj się do oceny
V=201019602-2010sin(0.7854)20sin(1.309)+10sin(1.0472)1+(2cos(0.7854)cos(1.0472)cos(1.309))-(cos(0.7854)2+cos(1.0472)2+cos(1.309)2)
Następny krok Oceniać
V=3626.60938343518
Ostatni krok Zaokrąglona odpowiedź
V=3626.6094

Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C Formuła Elementy

Zmienne
Funkcje
Objętość równoległościanów
Objętość równoległościanu to całkowita ilość trójwymiarowej przestrzeni zamkniętej przez powierzchnię równoległościanu.
Symbol: V
Pomiar: TomJednostka:
Notatka: Wartość powinna być większa niż 0.
Strona B równoległościanu
Bok B równoległościanu to długość dowolnego z trzech boków od dowolnego stałego wierzchołka równoległościanu.
Symbol: Sb
Pomiar: DługośćJednostka: m
Notatka: Wartość powinna być większa niż 0.
Bok C równoległościanu
Bok C równoległościanu to długość dowolnego z trzech boków od dowolnego ustalonego wierzchołka równoległościanu.
Symbol: Sc
Pomiar: DługośćJednostka: m
Notatka: Wartość powinna być większa niż 0.
Całkowita powierzchnia równoległościanu
Całkowite pole powierzchni równoległościanu to całkowita wielkość płaszczyzny zamkniętej przez całą powierzchnię równoległościanu.
Symbol: TSA
Pomiar: ObszarJednostka:
Notatka: Wartość powinna być większa niż 0.
Kąt alfa równoległościanu
Kąt alfa równoległościanu to kąt utworzony przez bok B i bok C na dowolnym z dwóch ostrych końców równoległościanu.
Symbol: ∠α
Pomiar: KątJednostka: °
Notatka: Wartość powinna mieścić się w przedziale od 0 do 180.
Kąt Gamma równoległościanu
Kąt Gamma równoległościanu to kąt utworzony przez bok A i bok B na dowolnym z dwóch ostrych końców równoległościanu.
Symbol: ∠γ
Pomiar: KątJednostka: °
Notatka: Wartość powinna mieścić się w przedziale od 0 do 180.
Kąt Beta równoległościanu
Kąt Beta równoległościanu to kąt utworzony przez bok A i bok C na dowolnym z dwóch ostrych końców równoległościanu.
Symbol: ∠β
Pomiar: KątJednostka: °
Notatka: Wartość powinna mieścić się w przedziale od 0 do 180.
sin
Sinus jest funkcją trygonometryczną opisującą stosunek długości przeciwległego boku trójkąta prostokątnego do długości przeciwprostokątnej.
Składnia: sin(Angle)
cos
Cosinus kąta to stosunek przyprostokątnej przylegającej do kąta do przeciwprostokątnej trójkąta.
Składnia: cos(Angle)
sqrt
Funkcja pierwiastka kwadratowego to funkcja, która przyjmuje jako dane wejściowe liczbę nieujemną i zwraca pierwiastek kwadratowy podanej liczby wejściowej.
Składnia: sqrt(Number)

Inne formuły do znalezienia Objętość równoległościanów

​Iść Objętość równoległościanu
V=SaSbSc1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)
​Iść Objętość równoległościanu przy danym polu powierzchni całkowitej i powierzchni bocznej
V=12TSA-LSAsin(∠β)Sb1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)

Jak ocenić Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C?

Ewaluator Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C używa Volume of Parallelepiped = Strona B równoległościanu*Bok C równoległościanu*(Całkowita powierzchnia równoległościanu/2-Strona B równoległościanu*Bok C równoległościanu*sin(Kąt alfa równoległościanu))/(Strona B równoległościanu*sin(Kąt Gamma równoległościanu)+Bok C równoległościanu*sin(Kąt Beta równoległościanu))*sqrt(1+(2*cos(Kąt alfa równoległościanu)*cos(Kąt Beta równoległościanu)*cos(Kąt Gamma równoległościanu))-(cos(Kąt alfa równoległościanu)^2+cos(Kąt Beta równoległościanu)^2+cos(Kąt Gamma równoległościanu)^2)) do oceny Objętość równoległościanów, Objętość równoległościanu na podstawie wzoru na całkowite pole powierzchni, bok B i bok C jest zdefiniowana jako ilość trójwymiarowej przestrzeni zamkniętej przez zamkniętą powierzchnię równoległościanu, obliczona na podstawie całkowitego pola powierzchni, boku B i boku C równoległościanu. Objętość równoległościanów jest oznaczona symbolem V.

Jak ocenić Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C za pomocą tego ewaluatora online? Aby skorzystać z tego narzędzia do oceny online dla Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C, wpisz Strona B równoległościanu (Sb), Bok C równoległościanu (Sc), Całkowita powierzchnia równoległościanu (TSA), Kąt alfa równoległościanu (∠α), Kąt Gamma równoległościanu (∠γ) & Kąt Beta równoległościanu (∠β) i naciśnij przycisk Oblicz.

FAQs NA Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C

Jaki jest wzór na znalezienie Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C?
Formuła Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C jest wyrażona jako Volume of Parallelepiped = Strona B równoległościanu*Bok C równoległościanu*(Całkowita powierzchnia równoległościanu/2-Strona B równoległościanu*Bok C równoległościanu*sin(Kąt alfa równoległościanu))/(Strona B równoległościanu*sin(Kąt Gamma równoległościanu)+Bok C równoległościanu*sin(Kąt Beta równoległościanu))*sqrt(1+(2*cos(Kąt alfa równoległościanu)*cos(Kąt Beta równoległościanu)*cos(Kąt Gamma równoległościanu))-(cos(Kąt alfa równoległościanu)^2+cos(Kąt Beta równoległościanu)^2+cos(Kąt Gamma równoległościanu)^2)). Oto przykład: 3626.609 = 20*10*(1960/2-20*10*sin(0.785398163397301))/(20*sin(1.3089969389955)+10*sin(1.0471975511964))*sqrt(1+(2*cos(0.785398163397301)*cos(1.0471975511964)*cos(1.3089969389955))-(cos(0.785398163397301)^2+cos(1.0471975511964)^2+cos(1.3089969389955)^2)).
Jak obliczyć Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C?
Dzięki Strona B równoległościanu (Sb), Bok C równoległościanu (Sc), Całkowita powierzchnia równoległościanu (TSA), Kąt alfa równoległościanu (∠α), Kąt Gamma równoległościanu (∠γ) & Kąt Beta równoległościanu (∠β) możemy znaleźć Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C za pomocą formuły - Volume of Parallelepiped = Strona B równoległościanu*Bok C równoległościanu*(Całkowita powierzchnia równoległościanu/2-Strona B równoległościanu*Bok C równoległościanu*sin(Kąt alfa równoległościanu))/(Strona B równoległościanu*sin(Kąt Gamma równoległościanu)+Bok C równoległościanu*sin(Kąt Beta równoległościanu))*sqrt(1+(2*cos(Kąt alfa równoległościanu)*cos(Kąt Beta równoległościanu)*cos(Kąt Gamma równoległościanu))-(cos(Kąt alfa równoległościanu)^2+cos(Kąt Beta równoległościanu)^2+cos(Kąt Gamma równoległościanu)^2)). W tej formule zastosowano także funkcje Sinus (grzech)Cosinus (cos), Pierwiastek kwadratowy (sqrt).
Jakie są inne sposoby obliczenia Objętość równoległościanów?
Oto różne sposoby obliczania Objętość równoległościanów-
  • Volume of Parallelepiped=Side A of Parallelepiped*Side B of Parallelepiped*Side C of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2))OpenImg
  • Volume of Parallelepiped=1/2*(Total Surface Area of Parallelepiped-Lateral Surface Area of Parallelepiped)/sin(Angle Beta of Parallelepiped)*Side B of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2))OpenImg
  • Volume of Parallelepiped=(Lateral Surface Area of Parallelepiped*Side A of Parallelepiped*Side C of Parallelepiped)/(2*(Side A of Parallelepiped*sin(Angle Gamma of Parallelepiped)+Side C of Parallelepiped*sin(Angle Alpha of Parallelepiped)))*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2))OpenImg
Czy Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C może być ujemna?
NIE, Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C zmierzona w Tom Nie mogę będzie ujemna.
Jaka jednostka jest używana do pomiaru Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C?
Wartość Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C jest zwykle mierzona przy użyciu zmiennej Sześcienny Metr [m³] dla wartości Tom. Sześcienny Centymetr[m³], Sześcienny Milimetr[m³], Litr[m³] to kilka innych jednostek, w których można zmierzyć Objętość równoległościanu przy danym polu powierzchni całkowitej, boku B i boku C.
Copied!