Fx Kopiëren
LaTeX Kopiëren
De oppervlakte-volumeverhouding van het parallellepipedum is de numerieke verhouding van het totale oppervlak van het parallellepipedum tot het volume van het parallellepipedum. Controleer FAQs
RA/V=LSA+2SaScsin(∠β)LSASaSc2(Sasin(∠γ)+Scsin(∠α))1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)
RA/V - Oppervlakte-volumeverhouding van parallellepipedum?LSA - Zijoppervlak van parallellepipedum?Sa - Kant A van het parallellepipedum?Sc - Kant C van parallellepipedum?∠β - Hoek Beta van Parallellepipedum?∠γ - Hoek Gamma van Parallellepipedum?∠α - Hoek Alpha van Parallellepipedum?

Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak Voorbeeld

Met waarden
Met eenheden
Slechts voorbeeld

Hier ziet u hoe de Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak-vergelijking eruit ziet als met waarden.

Hier ziet u hoe de Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak-vergelijking eruit ziet als met eenheden.

Hier ziet u hoe de Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak-vergelijking eruit ziet als.

0.5406Edit=1440Edit+230Edit10Editsin(60Edit)1440Edit30Edit10Edit2(30Editsin(75Edit)+10Editsin(45Edit))1+(2cos(45Edit)cos(60Edit)cos(75Edit))-(cos(45Edit)2+cos(60Edit)2+cos(75Edit)2)
Kopiëren
resetten
Deel
Je bent hier -

Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak Oplossing

Volg onze stapsgewijze oplossing voor het berekenen van Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak?

Eerste stap Overweeg de formule
RA/V=LSA+2SaScsin(∠β)LSASaSc2(Sasin(∠γ)+Scsin(∠α))1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)
Volgende stap Vervang waarden van variabelen
RA/V=1440+230m10msin(60°)144030m10m2(30msin(75°)+10msin(45°))1+(2cos(45°)cos(60°)cos(75°))-(cos(45°)2+cos(60°)2+cos(75°)2)
Volgende stap Eenheden converteren
RA/V=1440+230m10msin(1.0472rad)144030m10m2(30msin(1.309rad)+10msin(0.7854rad))1+(2cos(0.7854rad)cos(1.0472rad)cos(1.309rad))-(cos(0.7854rad)2+cos(1.0472rad)2+cos(1.309rad)2)
Volgende stap Bereid je voor om te evalueren
RA/V=1440+23010sin(1.0472)144030102(30sin(1.309)+10sin(0.7854))1+(2cos(0.7854)cos(1.0472)cos(1.309))-(cos(0.7854)2+cos(1.0472)2+cos(1.309)2)
Volgende stap Evalueer
RA/V=0.54057103199881m⁻¹
Laatste stap Afrondingsantwoord
RA/V=0.5406m⁻¹

Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak Formule Elementen

Variabelen
Functies
Oppervlakte-volumeverhouding van parallellepipedum
De oppervlakte-volumeverhouding van het parallellepipedum is de numerieke verhouding van het totale oppervlak van het parallellepipedum tot het volume van het parallellepipedum.
Symbool: RA/V
Meting: Wederzijdse lengteEenheid: m⁻¹
Opmerking: De waarde moet groter zijn dan 0.
Zijoppervlak van parallellepipedum
Zijoppervlak van het parallellepipedum is de hoeveelheid vlak die wordt omsloten door alle zijvlakken (dat wil zeggen, boven- en ondervlakken zijn uitgesloten) van het parallellepipedum.
Symbool: LSA
Meting: GebiedEenheid:
Opmerking: De waarde moet groter zijn dan 0.
Kant A van het parallellepipedum
Zijde A van het parallellepipedum is de lengte van een van de drie zijden vanaf een vast hoekpunt van het parallellepipedum.
Symbool: Sa
Meting: LengteEenheid: m
Opmerking: De waarde moet groter zijn dan 0.
Kant C van parallellepipedum
Zijde C van het parallellepipedum is de lengte van een van de drie zijden vanaf een vast hoekpunt van het parallellepipedum.
Symbool: Sc
Meting: LengteEenheid: m
Opmerking: De waarde moet groter zijn dan 0.
Hoek Beta van Parallellepipedum
Hoek Bèta van de parallellepipedum is de hoek gevormd door zijde A en zijde C bij een van de twee scherpe uiteinden van het parallellepipedum.
Symbool: ∠β
Meting: HoekEenheid: °
Opmerking: De waarde moet tussen 0 en 180 liggen.
Hoek Gamma van Parallellepipedum
Hoekgamma van het parallellepipedum is de hoek gevormd door zijde A en zijde B bij een van de twee scherpe uiteinden van het parallellepipedum.
Symbool: ∠γ
Meting: HoekEenheid: °
Opmerking: De waarde moet tussen 0 en 180 liggen.
Hoek Alpha van Parallellepipedum
Hoek alfa van parallellepipedum is de hoek gevormd door zijde B en zijde C bij een van de twee scherpe uiteinden van het parallellepipedum.
Symbool: ∠α
Meting: HoekEenheid: °
Opmerking: De waarde moet tussen 0 en 180 liggen.
sin
Sinus is een trigonometrische functie die de verhouding beschrijft van de lengte van de tegenoverliggende zijde van een rechthoekige driehoek tot de lengte van de hypotenusa.
Syntaxis: sin(Angle)
cos
De cosinus van een hoek is de verhouding van de zijde die aan de hoek grenst tot de hypotenusa van de driehoek.
Syntaxis: cos(Angle)
sqrt
Een vierkantswortelfunctie is een functie die een niet-negatief getal als invoer neemt en de vierkantswortel van het opgegeven invoergetal retourneert.
Syntaxis: sqrt(Number)

Andere formules om Oppervlakte-volumeverhouding van parallellepipedum te vinden

​Gan Oppervlakte-volumeverhouding van parallellepipedum
RA/V=2((SaSbsin(∠γ))+(SaScsin(∠β))+(SbScsin(∠α)))SaSbSc1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)
​Gan Oppervlakte-volumeverhouding van parallellepipedum gegeven volume, kant A en kant C
RA/V=2(Vsin(∠γ)Sc1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)+(SaScsin(∠β))+Vsin(∠α)Sa1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2))V

Hoe Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak evalueren?

De beoordelaar van Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak gebruikt Surface to Volume Ratio of Parallelepiped = (Zijoppervlak van parallellepipedum+2*Kant A van het parallellepipedum*Kant C van parallellepipedum*sin(Hoek Beta van Parallellepipedum))/((Zijoppervlak van parallellepipedum*Kant A van het parallellepipedum*Kant C van parallellepipedum)/(2*(Kant A van het parallellepipedum*sin(Hoek Gamma van Parallellepipedum)+Kant C van parallellepipedum*sin(Hoek Alpha van Parallellepipedum)))*sqrt(1+(2*cos(Hoek Alpha van Parallellepipedum)*cos(Hoek Beta van Parallellepipedum)*cos(Hoek Gamma van Parallellepipedum))-(cos(Hoek Alpha van Parallellepipedum)^2+cos(Hoek Beta van Parallellepipedum)^2+cos(Hoek Gamma van Parallellepipedum)^2))) om de Oppervlakte-volumeverhouding van parallellepipedum, De oppervlakte-volumeverhouding van het parallellepipedum gegeven laterale oppervlakte-formule wordt gedefinieerd als de numerieke verhouding van het totale oppervlak van het parallellepipedum tot het volume van het parallellepipedum, berekend met behulp van het laterale oppervlak van het parallellepipedum, te evalueren. Oppervlakte-volumeverhouding van parallellepipedum wordt aangegeven met het symbool RA/V.

Hoe kan ik Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak evalueren met behulp van deze online beoordelaar? Om deze online evaluator voor Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak te gebruiken, voert u Zijoppervlak van parallellepipedum (LSA), Kant A van het parallellepipedum (Sa), Kant C van parallellepipedum (Sc), Hoek Beta van Parallellepipedum (∠β), Hoek Gamma van Parallellepipedum (∠γ) & Hoek Alpha van Parallellepipedum (∠α) in en klikt u op de knop Berekenen.

FAQs op Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak

Wat is de formule om Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak te vinden?
De formule van Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak wordt uitgedrukt als Surface to Volume Ratio of Parallelepiped = (Zijoppervlak van parallellepipedum+2*Kant A van het parallellepipedum*Kant C van parallellepipedum*sin(Hoek Beta van Parallellepipedum))/((Zijoppervlak van parallellepipedum*Kant A van het parallellepipedum*Kant C van parallellepipedum)/(2*(Kant A van het parallellepipedum*sin(Hoek Gamma van Parallellepipedum)+Kant C van parallellepipedum*sin(Hoek Alpha van Parallellepipedum)))*sqrt(1+(2*cos(Hoek Alpha van Parallellepipedum)*cos(Hoek Beta van Parallellepipedum)*cos(Hoek Gamma van Parallellepipedum))-(cos(Hoek Alpha van Parallellepipedum)^2+cos(Hoek Beta van Parallellepipedum)^2+cos(Hoek Gamma van Parallellepipedum)^2))). Hier is een voorbeeld: 0.540571 = (1440+2*30*10*sin(1.0471975511964))/((1440*30*10)/(2*(30*sin(1.3089969389955)+10*sin(0.785398163397301)))*sqrt(1+(2*cos(0.785398163397301)*cos(1.0471975511964)*cos(1.3089969389955))-(cos(0.785398163397301)^2+cos(1.0471975511964)^2+cos(1.3089969389955)^2))).
Hoe bereken je Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak?
Met Zijoppervlak van parallellepipedum (LSA), Kant A van het parallellepipedum (Sa), Kant C van parallellepipedum (Sc), Hoek Beta van Parallellepipedum (∠β), Hoek Gamma van Parallellepipedum (∠γ) & Hoek Alpha van Parallellepipedum (∠α) kunnen we Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak vinden met behulp van de formule - Surface to Volume Ratio of Parallelepiped = (Zijoppervlak van parallellepipedum+2*Kant A van het parallellepipedum*Kant C van parallellepipedum*sin(Hoek Beta van Parallellepipedum))/((Zijoppervlak van parallellepipedum*Kant A van het parallellepipedum*Kant C van parallellepipedum)/(2*(Kant A van het parallellepipedum*sin(Hoek Gamma van Parallellepipedum)+Kant C van parallellepipedum*sin(Hoek Alpha van Parallellepipedum)))*sqrt(1+(2*cos(Hoek Alpha van Parallellepipedum)*cos(Hoek Beta van Parallellepipedum)*cos(Hoek Gamma van Parallellepipedum))-(cos(Hoek Alpha van Parallellepipedum)^2+cos(Hoek Beta van Parallellepipedum)^2+cos(Hoek Gamma van Parallellepipedum)^2))). Deze formule gebruikt ook de functie(s) van Sinus (zonde)Cosinus (cos), Vierkantswortel (sqrt).
Wat zijn de andere manieren om Oppervlakte-volumeverhouding van parallellepipedum te berekenen?
Hier zijn de verschillende manieren om Oppervlakte-volumeverhouding van parallellepipedum-
  • Surface to Volume Ratio of Parallelepiped=(2*((Side A of Parallelepiped*Side B of Parallelepiped*sin(Angle Gamma of Parallelepiped))+(Side A of Parallelepiped*Side C of Parallelepiped*sin(Angle Beta of Parallelepiped))+(Side B of Parallelepiped*Side C of Parallelepiped*sin(Angle Alpha of Parallelepiped))))/(Side A of Parallelepiped*Side B of Parallelepiped*Side C of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))OpenImg
  • Surface to Volume Ratio of Parallelepiped=(2*((Volume of Parallelepiped*sin(Angle Gamma of Parallelepiped))/(Side C of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Side A of Parallelepiped*Side C of Parallelepiped*sin(Angle Beta of Parallelepiped))+(Volume of Parallelepiped*sin(Angle Alpha of Parallelepiped))/(Side A of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))))/Volume of ParallelepipedOpenImg
  • Surface to Volume Ratio of Parallelepiped=(2*((Volume of Parallelepiped*sin(Angle Gamma of Parallelepiped))/(Side C of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Volume of Parallelepiped*sin(Angle Beta of Parallelepiped))/(Side B of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Side B of Parallelepiped*Side C of Parallelepiped*sin(Angle Alpha of Parallelepiped))))/Volume of ParallelepipedOpenImg
te berekenen
Kan de Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak negatief zijn?
Nee, de Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak, gemeten in Wederzijdse lengte kan niet moet negatief zijn.
Welke eenheid wordt gebruikt om Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak te meten?
Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak wordt meestal gemeten met de 1 per meter[m⁻¹] voor Wederzijdse lengte. 1 / kilometer[m⁻¹], 1 mijl[m⁻¹], 1 / Werf[m⁻¹] zijn de weinige andere eenheden waarin Oppervlakte-volumeverhouding van parallellepipedum gegeven lateraal oppervlak kan worden gemeten.
Copied!