Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem Formule

Fx Kopiëren
LaTeX Kopiëren
Ideale gasentropie is de entropie in een ideale toestand. Controleer FAQs
Sig=(y1S1ig+y2S2ig)-[R](y1ln(y1)+y2ln(y2))
Sig - Ideale gasentropie?y1 - Molfractie van component 1 in dampfase?S1ig - Ideale gasentropie van component 1?y2 - Molfractie van component 2 in dampfase?S2ig - Ideale gasentropie van component 2?[R] - Universele gasconstante?

Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem Voorbeeld

Met waarden
Met eenheden
Slechts voorbeeld

Hier ziet u hoe de Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem-vergelijking eruit ziet als met waarden.

Hier ziet u hoe de Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem-vergelijking eruit ziet als met eenheden.

Hier ziet u hoe de Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem-vergelijking eruit ziet als.

91.4655Edit=(0.5Edit87Edit+0.55Edit77Edit)-8.3145(0.5Editln(0.5Edit)+0.55Editln(0.55Edit))
Kopiëren
resetten
Deel
Je bent hier -
HomeIcon Thuis » Category Engineering » Category Chemische technologie » Category Thermodynamica » fx Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem

Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem Oplossing

Volg onze stapsgewijze oplossing voor het berekenen van Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem?

Eerste stap Overweeg de formule
Sig=(y1S1ig+y2S2ig)-[R](y1ln(y1)+y2ln(y2))
Volgende stap Vervang waarden van variabelen
Sig=(0.587J/kg*K+0.5577J/kg*K)-[R](0.5ln(0.5)+0.55ln(0.55))
Volgende stap Vervang de waarden van constanten
Sig=(0.587J/kg*K+0.5577J/kg*K)-8.3145(0.5ln(0.5)+0.55ln(0.55))
Volgende stap Bereid je voor om te evalueren
Sig=(0.587+0.5577)-8.3145(0.5ln(0.5)+0.55ln(0.55))
Volgende stap Evalueer
Sig=91.4654545278143J/kg*K
Laatste stap Afrondingsantwoord
Sig=91.4655J/kg*K

Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem Formule Elementen

Variabelen
Constanten
Functies
Ideale gasentropie
Ideale gasentropie is de entropie in een ideale toestand.
Symbool: Sig
Meting: Specifieke entropieEenheid: J/kg*K
Opmerking: Waarde kan positief of negatief zijn.
Molfractie van component 1 in dampfase
De molfractie van component 1 in dampfase kan worden gedefinieerd als de verhouding van het aantal molen van een component 1 tot het totale aantal molen van componenten aanwezig in de dampfase.
Symbool: y1
Meting: NAEenheid: Unitless
Opmerking: De waarde moet tussen 0 en 1 liggen.
Ideale gasentropie van component 1
Ideale gasentropie van component 1 is de entropie van component 1 in een ideale toestand.
Symbool: S1ig
Meting: Specifieke entropieEenheid: J/kg*K
Opmerking: Waarde kan positief of negatief zijn.
Molfractie van component 2 in dampfase
De molfractie van component 2 in dampfase kan worden gedefinieerd als de verhouding van het aantal molen van een component 2 tot het totale aantal molen van componenten aanwezig in de dampfase.
Symbool: y2
Meting: NAEenheid: Unitless
Opmerking: De waarde moet tussen 0 en 1 liggen.
Ideale gasentropie van component 2
Ideaal Gasentropie van component 2 is de entropie van component 2 in een ideale toestand.
Symbool: S2ig
Meting: Specifieke entropieEenheid: J/kg*K
Opmerking: Waarde kan positief of negatief zijn.
Universele gasconstante
Universele gasconstante is een fundamentele fysische constante die voorkomt in de ideale gaswet, die de druk, het volume en de temperatuur van een ideaal gas met elkaar in verband brengt.
Symbool: [R]
Waarde: 8.31446261815324
ln
De natuurlijke logaritme, ook wel logaritme met grondtal e genoemd, is de inverse functie van de natuurlijke exponentiële functie.
Syntaxis: ln(Number)

Andere formules in de categorie Ideaal gasmengselmodel

​Gan Ideal Gas Gibbs Free Energy met behulp van ideaal gasmengselmodel in binair systeem
Gig=modu̲s((y1G1ig+y2G2ig)+[R]T(y1ln(y1)+y2ln(y2)))
​Gan Ideale gasenthalpie met behulp van ideaal gasmengselmodel in binair systeem
Hig=y1H1ig+y2H2ig
​Gan Ideaal gasvolume met behulp van ideaal gasmengselmodel in binair systeem
Vig=y1V1ig+y2V2ig

Hoe Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem evalueren?

De beoordelaar van Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem gebruikt Ideal Gas Entropy = (Molfractie van component 1 in dampfase*Ideale gasentropie van component 1+Molfractie van component 2 in dampfase*Ideale gasentropie van component 2)-[R]*(Molfractie van component 1 in dampfase*ln(Molfractie van component 1 in dampfase)+Molfractie van component 2 in dampfase*ln(Molfractie van component 2 in dampfase)) om de Ideale gasentropie, De ideale gasentropie met behulp van het ideale gasmengselmodel in de binaire systeemformule wordt gedefinieerd als de functie van de ideale gasentropie van beide componenten en de molfractie van beide componenten in de dampfase in het binaire systeem, te evalueren. Ideale gasentropie wordt aangegeven met het symbool Sig.

Hoe kan ik Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem evalueren met behulp van deze online beoordelaar? Om deze online evaluator voor Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem te gebruiken, voert u Molfractie van component 1 in dampfase (y1), Ideale gasentropie van component 1 (S1ig), Molfractie van component 2 in dampfase (y2) & Ideale gasentropie van component 2 (S2ig) in en klikt u op de knop Berekenen.

FAQs op Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem

Wat is de formule om Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem te vinden?
De formule van Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem wordt uitgedrukt als Ideal Gas Entropy = (Molfractie van component 1 in dampfase*Ideale gasentropie van component 1+Molfractie van component 2 in dampfase*Ideale gasentropie van component 2)-[R]*(Molfractie van component 1 in dampfase*ln(Molfractie van component 1 in dampfase)+Molfractie van component 2 in dampfase*ln(Molfractie van component 2 in dampfase)). Hier is een voorbeeld: 91.46545 = (0.5*87+0.55*77)-[R]*(0.5*ln(0.5)+0.55*ln(0.55)).
Hoe bereken je Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem?
Met Molfractie van component 1 in dampfase (y1), Ideale gasentropie van component 1 (S1ig), Molfractie van component 2 in dampfase (y2) & Ideale gasentropie van component 2 (S2ig) kunnen we Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem vinden met behulp van de formule - Ideal Gas Entropy = (Molfractie van component 1 in dampfase*Ideale gasentropie van component 1+Molfractie van component 2 in dampfase*Ideale gasentropie van component 2)-[R]*(Molfractie van component 1 in dampfase*ln(Molfractie van component 1 in dampfase)+Molfractie van component 2 in dampfase*ln(Molfractie van component 2 in dampfase)). Deze formule gebruikt ook de functie(s) van Universele gasconstante en Natuurlijke logaritme (ln).
Kan de Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem negatief zijn?
Ja, de Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem, gemeten in Specifieke entropie kan moet negatief zijn.
Welke eenheid wordt gebruikt om Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem te meten?
Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem wordt meestal gemeten met de Joule per kilogram K[J/kg*K] voor Specifieke entropie. Calorie per gram per celcius[J/kg*K], Joule per kilogram per celcius[J/kg*K], Kilojoule per Kilogram per Celcius[J/kg*K] zijn de weinige andere eenheden waarin Ideale gasentropie met behulp van ideaal gasmengselmodel in binair systeem kan worden gemeten.
Copied!