Fx Kopiëren
LaTeX Kopiëren
De hoogte van de gebogen kubus is de afstand tussen het laagste en hoogste punt van de gebogen kubus die rechtop staat en is gelijk aan de hoogte van de kubus die gebogen is om de gebogen kubus te vormen. Controleer FAQs
h=dSpace2-lFirst Partial2-lSecond Partial2
h - Hoogte van gebogen kubus?dSpace - Ruimtediagonaal van gebogen kubus?lFirst Partial - Eerste gedeeltelijke lengte van gebogen kubus?lSecond Partial - Tweede gedeeltelijke lengte van gebogen kubus?

Hoogte van gebogen kubusvorm gegeven ruimtediagonaal Voorbeeld

Met waarden
Met eenheden
Slechts voorbeeld

Hier ziet u hoe de Hoogte van gebogen kubusvorm gegeven ruimtediagonaal-vergelijking eruit ziet als met waarden.

Hier ziet u hoe de Hoogte van gebogen kubusvorm gegeven ruimtediagonaal-vergelijking eruit ziet als met eenheden.

Hier ziet u hoe de Hoogte van gebogen kubusvorm gegeven ruimtediagonaal-vergelijking eruit ziet als.

9.5917Edit=12Edit2-6Edit2-4Edit2
Kopiëren
resetten
Deel
Je bent hier -
HomeIcon Thuis » Category Wiskunde » Category Geometrie » Category 3D-geometrie » fx Hoogte van gebogen kubusvorm gegeven ruimtediagonaal

Hoogte van gebogen kubusvorm gegeven ruimtediagonaal Oplossing

Volg onze stapsgewijze oplossing voor het berekenen van Hoogte van gebogen kubusvorm gegeven ruimtediagonaal?

Eerste stap Overweeg de formule
h=dSpace2-lFirst Partial2-lSecond Partial2
Volgende stap Vervang waarden van variabelen
h=12m2-6m2-4m2
Volgende stap Bereid je voor om te evalueren
h=122-62-42
Volgende stap Evalueer
h=9.59166304662544m
Laatste stap Afrondingsantwoord
h=9.5917m

Hoogte van gebogen kubusvorm gegeven ruimtediagonaal Formule Elementen

Variabelen
Functies
Hoogte van gebogen kubus
De hoogte van de gebogen kubus is de afstand tussen het laagste en hoogste punt van de gebogen kubus die rechtop staat en is gelijk aan de hoogte van de kubus die gebogen is om de gebogen kubus te vormen.
Symbool: h
Meting: LengteEenheid: m
Opmerking: Waarde moet groter zijn dan 0.
Ruimtediagonaal van gebogen kubus
Ruimtediagonaal van gebogen kubus is het lijnsegment dat twee hoekpunten verbindt die niet op hetzelfde vlak liggen.
Symbool: dSpace
Meting: LengteEenheid: m
Opmerking: Waarde moet groter zijn dan 0.
Eerste gedeeltelijke lengte van gebogen kubus
De eerste gedeeltelijke lengte van de gebogen kubus is de buitenrand van het horizontale deel van de gebogen kubus die rechtop staat, deze is gelijk aan de lengte van het eerste deel van de gebogen kubus.
Symbool: lFirst Partial
Meting: LengteEenheid: m
Opmerking: Waarde moet groter zijn dan 0.
Tweede gedeeltelijke lengte van gebogen kubus
De tweede gedeeltelijke lengte van de gebogen kubus is de buitenrand van het verticale deel van de gebogen kubus die rechtop staat, deze is gelijk aan de lengte van het tweede deel van de gebogen kubus.
Symbool: lSecond Partial
Meting: LengteEenheid: m
Opmerking: Waarde moet groter zijn dan 0.
sqrt
Een vierkantswortelfunctie is een functie die een niet-negatief getal als invoer neemt en de vierkantswortel van het opgegeven invoergetal retourneert.
Syntaxis: sqrt(Number)

Andere formules om Hoogte van gebogen kubus te vinden

​Gan Hoogte van gebogen balk gegeven ruimtediagonaal, totale lengte en eerste gedeeltelijke lengte
h=dSpace2-(lTotal-lFirst Partial)2-lFirst Partial2
​Gan Hoogte van gebogen balk gegeven ruimtediagonaal, totale lengte en tweede gedeeltelijke lengte
h=dSpace2-(lTotal-lSecond Partial)2-lSecond Partial2
​Gan Hoogte van gebogen kubus gegeven volume, totale lengte en breedte
h=V(lTotal-w)w

Hoe Hoogte van gebogen kubusvorm gegeven ruimtediagonaal evalueren?

De beoordelaar van Hoogte van gebogen kubusvorm gegeven ruimtediagonaal gebruikt Height of Bent Cuboid = sqrt(Ruimtediagonaal van gebogen kubus^2-Eerste gedeeltelijke lengte van gebogen kubus^2-Tweede gedeeltelijke lengte van gebogen kubus^2) om de Hoogte van gebogen kubus, Hoogte van de gebogen rechthoek gegeven ruimte Diagonale formule wordt gedefinieerd als de afstand tussen het laagste en hoogste punt van de gebogen rechthoek die rechtop staat, is gelijk aan de hoogte van de rechthoek die is gebogen om de gebogen rechthoek te vormen en wordt berekend met behulp van de ruimtediagonaal, eerst gedeeltelijke lengte en tweede gedeeltelijke lengte van Bent Cuboid, te evalueren. Hoogte van gebogen kubus wordt aangegeven met het symbool h.

Hoe kan ik Hoogte van gebogen kubusvorm gegeven ruimtediagonaal evalueren met behulp van deze online beoordelaar? Om deze online evaluator voor Hoogte van gebogen kubusvorm gegeven ruimtediagonaal te gebruiken, voert u Ruimtediagonaal van gebogen kubus (dSpace), Eerste gedeeltelijke lengte van gebogen kubus (lFirst Partial) & Tweede gedeeltelijke lengte van gebogen kubus (lSecond Partial) in en klikt u op de knop Berekenen.

FAQs op Hoogte van gebogen kubusvorm gegeven ruimtediagonaal

Wat is de formule om Hoogte van gebogen kubusvorm gegeven ruimtediagonaal te vinden?
De formule van Hoogte van gebogen kubusvorm gegeven ruimtediagonaal wordt uitgedrukt als Height of Bent Cuboid = sqrt(Ruimtediagonaal van gebogen kubus^2-Eerste gedeeltelijke lengte van gebogen kubus^2-Tweede gedeeltelijke lengte van gebogen kubus^2). Hier is een voorbeeld: 9.591663 = sqrt(12^2-6^2-4^2).
Hoe bereken je Hoogte van gebogen kubusvorm gegeven ruimtediagonaal?
Met Ruimtediagonaal van gebogen kubus (dSpace), Eerste gedeeltelijke lengte van gebogen kubus (lFirst Partial) & Tweede gedeeltelijke lengte van gebogen kubus (lSecond Partial) kunnen we Hoogte van gebogen kubusvorm gegeven ruimtediagonaal vinden met behulp van de formule - Height of Bent Cuboid = sqrt(Ruimtediagonaal van gebogen kubus^2-Eerste gedeeltelijke lengte van gebogen kubus^2-Tweede gedeeltelijke lengte van gebogen kubus^2). Deze formule gebruikt ook de functie(s) van Vierkantswortel (sqrt).
Wat zijn de andere manieren om Hoogte van gebogen kubus te berekenen?
Hier zijn de verschillende manieren om Hoogte van gebogen kubus-
  • Height of Bent Cuboid=sqrt(Space Diagonal of Bent Cuboid^2-(Total Length of Bent Cuboid-First Partial Length of Bent Cuboid)^2-First Partial Length of Bent Cuboid^2)OpenImg
  • Height of Bent Cuboid=sqrt(Space Diagonal of Bent Cuboid^2-(Total Length of Bent Cuboid-Second Partial Length of Bent Cuboid)^2-Second Partial Length of Bent Cuboid^2)OpenImg
  • Height of Bent Cuboid=Volume of Bent Cuboid/((Total Length of Bent Cuboid-Width of Bent Cuboid)*Width of Bent Cuboid)OpenImg
te berekenen
Kan de Hoogte van gebogen kubusvorm gegeven ruimtediagonaal negatief zijn?
Nee, de Hoogte van gebogen kubusvorm gegeven ruimtediagonaal, gemeten in Lengte kan niet moet negatief zijn.
Welke eenheid wordt gebruikt om Hoogte van gebogen kubusvorm gegeven ruimtediagonaal te meten?
Hoogte van gebogen kubusvorm gegeven ruimtediagonaal wordt meestal gemeten met de Meter[m] voor Lengte. Millimeter[m], Kilometer[m], decimeter[m] zijn de weinige andere eenheden waarin Hoogte van gebogen kubusvorm gegeven ruimtediagonaal kan worden gemeten.
Copied!