Fx Kopiëren
LaTeX Kopiëren
De oppervlakte van de driehoek is de hoeveelheid gebied of ruimte die wordt ingenomen door de driehoek. Controleer FAQs
A=SaSc2(sin(∠B))
A - Gebied van Driehoek?Sa - Kant A van Driehoek?Sc - Kant C van Driehoek?∠B - Hoek B van Driehoek?

Gebied van driehoek gegeven zijden A en C en sinus van hoek B Voorbeeld

Met waarden
Met eenheden
Slechts voorbeeld

Hier ziet u hoe de Gebied van driehoek gegeven zijden A en C en sinus van hoek B-vergelijking eruit ziet als met waarden.

Hier ziet u hoe de Gebied van driehoek gegeven zijden A en C en sinus van hoek B-vergelijking eruit ziet als met eenheden.

Hier ziet u hoe de Gebied van driehoek gegeven zijden A en C en sinus van hoek B-vergelijking eruit ziet als.

64.2788Edit=10Edit20Edit2(sin(40Edit))
Kopiëren
resetten
Deel
Je bent hier -
HomeIcon Thuis » Category Wiskunde » Category Geometrie » Category 2D-geometrie » fx Gebied van driehoek gegeven zijden A en C en sinus van hoek B

Gebied van driehoek gegeven zijden A en C en sinus van hoek B Oplossing

Volg onze stapsgewijze oplossing voor het berekenen van Gebied van driehoek gegeven zijden A en C en sinus van hoek B?

Eerste stap Overweeg de formule
A=SaSc2(sin(∠B))
Volgende stap Vervang waarden van variabelen
A=10m20m2(sin(40°))
Volgende stap Eenheden converteren
A=10m20m2(sin(0.6981rad))
Volgende stap Bereid je voor om te evalueren
A=10202(sin(0.6981))
Volgende stap Evalueer
A=64.2787609686439
Laatste stap Afrondingsantwoord
A=64.2788

Gebied van driehoek gegeven zijden A en C en sinus van hoek B Formule Elementen

Variabelen
Functies
Gebied van Driehoek
De oppervlakte van de driehoek is de hoeveelheid gebied of ruimte die wordt ingenomen door de driehoek.
Symbool: A
Meting: GebiedEenheid:
Opmerking: De waarde moet groter zijn dan 0.
Kant A van Driehoek
De zijde A van de driehoek is de lengte van de zijde A, van de drie zijden van de driehoek. Met andere woorden, de zijde A van de driehoek is de zijde tegenover de hoek A.
Symbool: Sa
Meting: LengteEenheid: m
Opmerking: De waarde moet groter zijn dan 0.
Kant C van Driehoek
De zijde C van de driehoek is de lengte van de zijde C van de drie zijden. Met andere woorden, zijde C van de driehoek is de zijde tegenover hoek C.
Symbool: Sc
Meting: LengteEenheid: m
Opmerking: De waarde moet groter zijn dan 0.
Hoek B van Driehoek
Hoek B van Driehoek is de maat voor de breedte van twee zijden die samenkomen om de hoek te vormen, tegenover zijde B van de Driehoek.
Symbool: ∠B
Meting: HoekEenheid: °
Opmerking: De waarde moet tussen 0 en 180 liggen.
sin
Sinus is een trigonometrische functie die de verhouding beschrijft van de lengte van de tegenoverliggende zijde van een rechthoekige driehoek tot de lengte van de hypotenusa.
Syntaxis: sin(Angle)

Andere formules om Gebied van Driehoek te vinden

​Gan Oppervlakte van de driehoek volgens de formule van Heron
A=s(s-Sa)(s-Sb)(s-Sc)
​Gan Gebied van driehoek gegeven basis en hoogte
A=12Schc
​Gan Gebied van driehoek
A=(Sa+Sb+Sc)(Sb+Sc-Sa)(Sa-Sb+Sc)(Sa+Sb-Sc)4
​Gan Gebied van driehoek gegeven twee hoeken en derde zijde
A=Sa2sin(∠B)sin(∠C)2sin(π-∠B-∠C)

Hoe Gebied van driehoek gegeven zijden A en C en sinus van hoek B evalueren?

De beoordelaar van Gebied van driehoek gegeven zijden A en C en sinus van hoek B gebruikt Area of Triangle = (Kant A van Driehoek*Kant C van Driehoek)/2*(sin(Hoek B van Driehoek)) om de Gebied van Driehoek, Het gebied van de driehoek gegeven de formule van zijden A en C en de sinus van hoek B wordt gedefinieerd als het gebied dat binnen de driehoek wordt ingenomen, berekend met behulp van de twee zijden A , te evalueren. Gebied van Driehoek wordt aangegeven met het symbool A.

Hoe kan ik Gebied van driehoek gegeven zijden A en C en sinus van hoek B evalueren met behulp van deze online beoordelaar? Om deze online evaluator voor Gebied van driehoek gegeven zijden A en C en sinus van hoek B te gebruiken, voert u Kant A van Driehoek (Sa), Kant C van Driehoek (Sc) & Hoek B van Driehoek (∠B) in en klikt u op de knop Berekenen.

FAQs op Gebied van driehoek gegeven zijden A en C en sinus van hoek B

Wat is de formule om Gebied van driehoek gegeven zijden A en C en sinus van hoek B te vinden?
De formule van Gebied van driehoek gegeven zijden A en C en sinus van hoek B wordt uitgedrukt als Area of Triangle = (Kant A van Driehoek*Kant C van Driehoek)/2*(sin(Hoek B van Driehoek)). Hier is een voorbeeld: 64.27876 = (10*20)/2*(sin(0.698131700797601)).
Hoe bereken je Gebied van driehoek gegeven zijden A en C en sinus van hoek B?
Met Kant A van Driehoek (Sa), Kant C van Driehoek (Sc) & Hoek B van Driehoek (∠B) kunnen we Gebied van driehoek gegeven zijden A en C en sinus van hoek B vinden met behulp van de formule - Area of Triangle = (Kant A van Driehoek*Kant C van Driehoek)/2*(sin(Hoek B van Driehoek)). Deze formule gebruikt ook de functie(s) van Sinus (zonde).
Wat zijn de andere manieren om Gebied van Driehoek te berekenen?
Hier zijn de verschillende manieren om Gebied van Driehoek-
  • Area of Triangle=sqrt(Semiperimeter of Triangle*(Semiperimeter of Triangle-Side A of Triangle)*(Semiperimeter of Triangle-Side B of Triangle)*(Semiperimeter of Triangle-Side C of Triangle))OpenImg
  • Area of Triangle=1/2*Side C of Triangle*Height on Side C of TriangleOpenImg
  • Area of Triangle=sqrt((Side A of Triangle+Side B of Triangle+Side C of Triangle)*(Side B of Triangle+Side C of Triangle-Side A of Triangle)*(Side A of Triangle-Side B of Triangle+Side C of Triangle)*(Side A of Triangle+Side B of Triangle-Side C of Triangle))/4OpenImg
te berekenen
Kan de Gebied van driehoek gegeven zijden A en C en sinus van hoek B negatief zijn?
Nee, de Gebied van driehoek gegeven zijden A en C en sinus van hoek B, gemeten in Gebied kan niet moet negatief zijn.
Welke eenheid wordt gebruikt om Gebied van driehoek gegeven zijden A en C en sinus van hoek B te meten?
Gebied van driehoek gegeven zijden A en C en sinus van hoek B wordt meestal gemeten met de Plein Meter[m²] voor Gebied. Plein Kilometre[m²], Plein Centimeter[m²], Plein Millimeter[m²] zijn de weinige andere eenheden waarin Gebied van driehoek gegeven zijden A en C en sinus van hoek B kan worden gemeten.
Copied!