Fx Kopiëren
LaTeX Kopiëren
De oppervlakte van de driehoek is de hoeveelheid gebied of ruimte die wordt ingenomen door de driehoek. Controleer FAQs
A=ScSasin(B/2)2tan(B/2)
A - Gebied van Driehoek?Sc - Kant C van Driehoek?Sa - Kant A van Driehoek?sin(B/2) - Zonde (B/2)?tan(B/2) - Bruin (B/2)?

Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) Voorbeeld

Met waarden
Met eenheden
Slechts voorbeeld

Hier ziet u hoe de Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2)-vergelijking eruit ziet als met waarden.

Hier ziet u hoe de Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2)-vergelijking eruit ziet als met eenheden.

Hier ziet u hoe de Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2)-vergelijking eruit ziet als.

64.98Edit=20Edit10Edit0.342Edit20.36Edit
Kopiëren
resetten
Deel
Je bent hier -
HomeIcon Thuis » Category Wiskunde » Category Geometrie » Category 2D-geometrie » fx Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2)

Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) Oplossing

Volg onze stapsgewijze oplossing voor het berekenen van Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2)?

Eerste stap Overweeg de formule
A=ScSasin(B/2)2tan(B/2)
Volgende stap Vervang waarden van variabelen
A=20m10m0.34220.36
Volgende stap Bereid je voor om te evalueren
A=20100.34220.36
Laatste stap Evalueer
A=64.98

Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) Formule Elementen

Variabelen
Gebied van Driehoek
De oppervlakte van de driehoek is de hoeveelheid gebied of ruimte die wordt ingenomen door de driehoek.
Symbool: A
Meting: GebiedEenheid:
Opmerking: De waarde moet groter zijn dan 0.
Kant C van Driehoek
De zijde C van de driehoek is de lengte van de zijde C van de drie zijden. Met andere woorden, zijde C van de driehoek is de zijde tegenover hoek C.
Symbool: Sc
Meting: LengteEenheid: m
Opmerking: De waarde moet groter zijn dan 0.
Kant A van Driehoek
De zijde A van de driehoek is de lengte van de zijde A, van de drie zijden van de driehoek. Met andere woorden, de zijde A van de driehoek is de zijde tegenover de hoek A.
Symbool: Sa
Meting: LengteEenheid: m
Opmerking: De waarde moet groter zijn dan 0.
Zonde (B/2)
Sin (B/2) is de waarde van de trigonometrische sinusfunctie van de helft van de gegeven hoek A van de driehoek.
Symbool: sin(B/2)
Meting: NAEenheid: Unitless
Opmerking: De waarde moet tussen -1.01 en 1.01 liggen.
Bruin (B/2)
Tan (B/2) is de waarde van de trigonometrische tangensfunctie van de helft van de gegeven hoek B.
Symbool: tan(B/2)
Meting: NAEenheid: Unitless
Opmerking: Waarde kan positief of negatief zijn.

Andere formules om Gebied van Driehoek te vinden

​Gan Oppervlakte van de driehoek met zijden B, C en Sin (A/2) en Cos (A/2)
A=SbScsin(A/2)cos(A/2)
​Gan Oppervlakte van de driehoek met zijden A, C en Sin (B/2) en Cos (B/2)
A=ScSasin(B/2)cos(B/2)
​Gan Oppervlakte van de driehoek met zijden A, B en Sin (C/2) en Cos (C/2)
A=SaSbsin(C/2)cos(C/2)
​Gan Gebied van de driehoek met zijden A, B en Cosec (C/2) en Sec (C/2)
A=SaSbcosec(C/2)sec(C/2)

Hoe Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) evalueren?

De beoordelaar van Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) gebruikt Area of Triangle = (Kant C van Driehoek*Kant A van Driehoek*Zonde (B/2)^2)/Bruin (B/2) om de Gebied van Driehoek, De oppervlakte van de driehoek met behulp van de zijden A, C en de formule Sin (B/2) en Tan (B/2) wordt gedefinieerd als de waarde van de oppervlakte van de driehoek met behulp van de zijden A , te evalueren. Gebied van Driehoek wordt aangegeven met het symbool A.

Hoe kan ik Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) evalueren met behulp van deze online beoordelaar? Om deze online evaluator voor Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) te gebruiken, voert u Kant C van Driehoek (Sc), Kant A van Driehoek (Sa), Zonde (B/2) (sin(B/2)) & Bruin (B/2) (tan(B/2)) in en klikt u op de knop Berekenen.

FAQs op Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2)

Wat is de formule om Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) te vinden?
De formule van Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) wordt uitgedrukt als Area of Triangle = (Kant C van Driehoek*Kant A van Driehoek*Zonde (B/2)^2)/Bruin (B/2). Hier is een voorbeeld: 64.98 = (20*10*0.342^2)/0.36.
Hoe bereken je Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2)?
Met Kant C van Driehoek (Sc), Kant A van Driehoek (Sa), Zonde (B/2) (sin(B/2)) & Bruin (B/2) (tan(B/2)) kunnen we Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) vinden met behulp van de formule - Area of Triangle = (Kant C van Driehoek*Kant A van Driehoek*Zonde (B/2)^2)/Bruin (B/2).
Wat zijn de andere manieren om Gebied van Driehoek te berekenen?
Hier zijn de verschillende manieren om Gebied van Driehoek-
  • Area of Triangle=Side B of Triangle*Side C of Triangle*Sin (A/2)*Cos (A/2)OpenImg
  • Area of Triangle=Side C of Triangle*Side A of Triangle*Sin (B/2)*Cos (B/2)OpenImg
  • Area of Triangle=Side A of Triangle*Side B of Triangle*Sin (C/2)*Cos (C/2)OpenImg
te berekenen
Kan de Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) negatief zijn?
Nee, de Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2), gemeten in Gebied kan niet moet negatief zijn.
Welke eenheid wordt gebruikt om Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) te meten?
Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) wordt meestal gemeten met de Plein Meter[m²] voor Gebied. Plein Kilometre[m²], Plein Centimeter[m²], Plein Millimeter[m²] zijn de weinige andere eenheden waarin Gebied van de driehoek met zijden A, C en Sin (B/2) en Tan (B/2) kan worden gemeten.
Copied!