Fx Kopiëren
LaTeX Kopiëren
De Spike Height of Polygram is de hoogte van de gelijkbenige driehoeken ten opzichte van de ongelijke zijde, die als spikes aan de polygoon van het Polygram zijn bevestigd. Controleer FAQs
hSpike=(4le2)-lBase24
hSpike - Aarhoogte van Polygram?le - Randlengte van Polygram?lBase - Basislengte van polygram?

Aarhoogte van Polygram Voorbeeld

Met waarden
Met eenheden
Slechts voorbeeld

Hier ziet u hoe de Aarhoogte van Polygram-vergelijking eruit ziet als met waarden.

Hier ziet u hoe de Aarhoogte van Polygram-vergelijking eruit ziet als met eenheden.

Hier ziet u hoe de Aarhoogte van Polygram-vergelijking eruit ziet als.

4Edit=(45Edit2)-6Edit24
Kopiëren
resetten
Deel
Je bent hier -
HomeIcon Thuis » Category Wiskunde » Category Geometrie » Category 2D-geometrie » fx Aarhoogte van Polygram

Aarhoogte van Polygram Oplossing

Volg onze stapsgewijze oplossing voor het berekenen van Aarhoogte van Polygram?

Eerste stap Overweeg de formule
hSpike=(4le2)-lBase24
Volgende stap Vervang waarden van variabelen
hSpike=(45m2)-6m24
Volgende stap Bereid je voor om te evalueren
hSpike=(452)-624
Laatste stap Evalueer
hSpike=4m

Aarhoogte van Polygram Formule Elementen

Variabelen
Functies
Aarhoogte van Polygram
De Spike Height of Polygram is de hoogte van de gelijkbenige driehoeken ten opzichte van de ongelijke zijde, die als spikes aan de polygoon van het Polygram zijn bevestigd.
Symbool: hSpike
Meting: LengteEenheid: m
Opmerking: Waarde moet groter zijn dan 0.
Randlengte van Polygram
De randlengte van polygram is de lengte van elke rand van de polygramvorm, van het ene uiteinde tot het andere uiteinde.
Symbool: le
Meting: LengteEenheid: m
Opmerking: Waarde moet groter zijn dan 0.
Basislengte van polygram
De basislengte van Polygram is de lengte van de ongelijke zijde van de gelijkbenige driehoek die zich vormt als de punten van het Polygram of de zijlengte van de veelhoek van Polygram.
Symbool: lBase
Meting: LengteEenheid: m
Opmerking: Waarde moet groter zijn dan 0.
sqrt
Een vierkantswortelfunctie is een functie die een niet-negatief getal als invoer neemt en de vierkantswortel van het opgegeven invoergetal retourneert.
Syntaxis: sqrt(Number)

Andere formules om Aarhoogte van Polygram te vinden

​Gan Spike Hoogte van Polygram gegeven Gebied
hSpike=(2ANSpikeslBase)-(lBase2tan(πNSpikes))

Hoe Aarhoogte van Polygram evalueren?

De beoordelaar van Aarhoogte van Polygram gebruikt Spike Height of Polygram = sqrt(((4*Randlengte van Polygram^2)-Basislengte van polygram^2)/4) om de Aarhoogte van Polygram, De formule Spike Height of Polygram wordt gedefinieerd als de hoogte van de gelijkbenige driehoeken ten opzichte van de ongelijke zijde, die als spikes aan de polygoon van het Polygram zijn bevestigd, te evalueren. Aarhoogte van Polygram wordt aangegeven met het symbool hSpike.

Hoe kan ik Aarhoogte van Polygram evalueren met behulp van deze online beoordelaar? Om deze online evaluator voor Aarhoogte van Polygram te gebruiken, voert u Randlengte van Polygram (le) & Basislengte van polygram (lBase) in en klikt u op de knop Berekenen.

FAQs op Aarhoogte van Polygram

Wat is de formule om Aarhoogte van Polygram te vinden?
De formule van Aarhoogte van Polygram wordt uitgedrukt als Spike Height of Polygram = sqrt(((4*Randlengte van Polygram^2)-Basislengte van polygram^2)/4). Hier is een voorbeeld: 4 = sqrt(((4*5^2)-6^2)/4).
Hoe bereken je Aarhoogte van Polygram?
Met Randlengte van Polygram (le) & Basislengte van polygram (lBase) kunnen we Aarhoogte van Polygram vinden met behulp van de formule - Spike Height of Polygram = sqrt(((4*Randlengte van Polygram^2)-Basislengte van polygram^2)/4). Deze formule gebruikt ook de functie(s) van Vierkantswortel (sqrt).
Wat zijn de andere manieren om Aarhoogte van Polygram te berekenen?
Hier zijn de verschillende manieren om Aarhoogte van Polygram-
  • Spike Height of Polygram=((2*Area of Polygram)/(Number of Spikes in Polygram*Base Length of Polygram))-(Base Length of Polygram/(2*tan(pi/Number of Spikes in Polygram)))OpenImg
te berekenen
Kan de Aarhoogte van Polygram negatief zijn?
Nee, de Aarhoogte van Polygram, gemeten in Lengte kan niet moet negatief zijn.
Welke eenheid wordt gebruikt om Aarhoogte van Polygram te meten?
Aarhoogte van Polygram wordt meestal gemeten met de Meter[m] voor Lengte. Millimeter[m], Kilometer[m], decimeter[m] zijn de weinige andere eenheden waarin Aarhoogte van Polygram kan worden gemeten.
Copied!