मोठ्या लुनचे क्षेत्र सूत्र

Fx कॉपी करा
LaTeX कॉपी करा
मोठ्या ल्युनचे क्षेत्रफळ म्हणजे ल्युन आकारातील मोठ्या चंद्र भागाने व्यापलेले विमानाचे एकूण प्रमाण. FAQs तपासा
ALarge=(π(rLarger2-rSmaller2))+(2ATriangle)+(rSmaller2arccos(rLarger2-rSmaller2-dCenters22rSmallerdCenters))-(rLarger2arccos(rLarger2+dCenters2-rSmaller22rLargerdCenters))
ALarge - मोठ्या लुनचे क्षेत्र?rLarger - ल्युनच्या मोठ्या वर्तुळाची त्रिज्या?rSmaller - चंद्राच्या लहान वर्तुळाची त्रिज्या?ATriangle - ल्युनच्या त्रिकोणाचे क्षेत्रफळ?dCenters - ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर?π - आर्किमिडीजचा स्थिरांक?

मोठ्या लुनचे क्षेत्र उदाहरण

मूल्यांसह
युनिट्ससह
फक्त उदाहरण

मोठ्या लुनचे क्षेत्र समीकरण मूल्यांसह सारखे कसे दिसते ते येथे आहे.

मोठ्या लुनचे क्षेत्र समीकरण युनिट्ससह सारखे कसे दिसते ते येथे आहे.

मोठ्या लुनचे क्षेत्र समीकरण सारखे कसे दिसते ते येथे आहे.

185.0336Edit=(3.1416(8Edit2-5Edit2))+(220Edit)+(5Edit2arccos(8Edit2-5Edit2-10Edit225Edit10Edit))-(8Edit2arccos(8Edit2+10Edit2-5Edit228Edit10Edit))
आपण येथे आहात -
HomeIcon मुख्यपृष्ठ » Category गणित » Category भूमिती » Category २ डी भूमिती » fx मोठ्या लुनचे क्षेत्र

मोठ्या लुनचे क्षेत्र उपाय

मोठ्या लुनचे क्षेत्र ची गणना कशी करायची यावर आमचे चरण-दर-चरण उपाय फॉलो करा?

पहिली पायरी सूत्राचा विचार करा
ALarge=(π(rLarger2-rSmaller2))+(2ATriangle)+(rSmaller2arccos(rLarger2-rSmaller2-dCenters22rSmallerdCenters))-(rLarger2arccos(rLarger2+dCenters2-rSmaller22rLargerdCenters))
पुढचे पाऊल व्हेरिएबल्सची पर्यायी मूल्ये
ALarge=(π(8m2-5m2))+(220)+(5m2arccos(8m2-5m2-10m225m10m))-(8m2arccos(8m2+10m2-5m228m10m))
पुढचे पाऊल स्थिरांकांची मूल्ये बदला
ALarge=(3.1416(8m2-5m2))+(220)+(5m2arccos(8m2-5m2-10m225m10m))-(8m2arccos(8m2+10m2-5m228m10m))
पुढचे पाऊल मूल्यांकन करण्याची तयारी करा
ALarge=(3.1416(82-52))+(220)+(52arccos(82-52-1022510))-(82arccos(82+102-522810))
पुढचे पाऊल मूल्यांकन करा
ALarge=185.033626384579
शेवटची पायरी गोलाकार उत्तर
ALarge=185.0336

मोठ्या लुनचे क्षेत्र सुत्र घटक

चल
स्थिरांक
कार्ये
मोठ्या लुनचे क्षेत्र
मोठ्या ल्युनचे क्षेत्रफळ म्हणजे ल्युन आकारातील मोठ्या चंद्र भागाने व्यापलेले विमानाचे एकूण प्रमाण.
चिन्ह: ALarge
मोजमाप: क्षेत्रफळयुनिट:
नोंद: मूल्य 0 पेक्षा मोठे असावे.
ल्युनच्या मोठ्या वर्तुळाची त्रिज्या
ल्युनच्या मोठ्या वर्तुळाची त्रिज्या ही दोन वर्तुळांपैकी जास्त आकाराच्या वर्तुळाची त्रिज्या आहे ज्याचा वापर करून चंद्र तयार केला जातो.
चिन्ह: rLarger
मोजमाप: लांबीयुनिट: m
नोंद: मूल्य 0 पेक्षा मोठे असावे.
चंद्राच्या लहान वर्तुळाची त्रिज्या
ल्युनच्या लहान वर्तुळाची त्रिज्या ही दोन वर्तुळांपैकी कमी आकाराच्या वर्तुळाची त्रिज्या आहे ज्याचा वापर करून चंद्र तयार केला जातो.
चिन्ह: rSmaller
मोजमाप: लांबीयुनिट: m
नोंद: मूल्य 0 पेक्षा मोठे असावे.
ल्युनच्या त्रिकोणाचे क्षेत्रफळ
ल्युनच्या त्रिकोणाचे क्षेत्रफळ म्हणजे ल्युनच्या दोन वर्तुळांच्या केंद्रांना आणि त्यांच्या छेदनबिंदूंपैकी एकाला जोडणाऱ्या त्रिकोणाने व्यापलेल्या विमानाचे एकूण प्रमाण.
चिन्ह: ATriangle
मोजमाप: क्षेत्रफळयुनिट:
नोंद: मूल्य 0 पेक्षा मोठे असावे.
ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर
ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर हे दोन वर्तुळांच्या केंद्रांना जोडणार्‍या रेषेची लांबी आहे ज्याद्वारे लून तयार होतो.
चिन्ह: dCenters
मोजमाप: लांबीयुनिट: m
नोंद: मूल्य 0 पेक्षा मोठे असावे.
आर्किमिडीजचा स्थिरांक
आर्किमिडीजचा स्थिरांक हा एक गणितीय स्थिरांक आहे जो वर्तुळाच्या परिघाच्या व्यासाचे गुणोत्तर दर्शवतो.
चिन्ह: π
मूल्य: 3.14159265358979323846264338327950288
cos
कोनाचा कोसाइन म्हणजे त्रिकोणाच्या कर्णाच्या कोनाला लागून असलेल्या बाजूचे गुणोत्तर.
मांडणी: cos(Angle)
arccos
आर्ककोसाइन फंक्शन, कोसाइन फंक्शनचे व्यस्त फंक्शन आहे. हे असे फंक्शन आहे जे इनपुट म्हणून गुणोत्तर घेते आणि कोसाइन त्या गुणोत्तराच्या बरोबरीचे कोन मिळवते.
मांडणी: arccos(Number)

लुने वर्गातील इतर सूत्रे

​जा ल्युनच्या त्रिकोणाचे क्षेत्रफळ
ATriangle=(rSmaller+rLarger+dCenters)(rLarger+dCenters-rSmaller)(dCenters+rSmaller-rLarger)(rSmaller+rLarger-dCenters)4
​जा लहान लुनचे क्षेत्रफळ
ASmall=(2ATriangle)+(rSmaller2arccos(rLarger2-rSmaller2-dCenters22rSmallerdCenters))-(rLarger2arccos(rLarger2+dCenters2-rSmaller22rLargerdCenters))
​जा Lune च्या विभागाचे क्षेत्रफळ
ASection=(πrSmaller2)-((2ATriangle)+(rSmaller2arccos(rLarger2-rSmaller2-dCenters22rSmallerdCenters))-(rLarger2arccos(rLarger2+dCenters2-rSmaller22rLargerdCenters)))

मोठ्या लुनचे क्षेत्र चे मूल्यमापन कसे करावे?

मोठ्या लुनचे क्षेत्र मूल्यांकनकर्ता मोठ्या लुनचे क्षेत्र, मोठ्या ल्युन सूत्राचे क्षेत्रफळ हे ल्युन आकाराच्या मोठ्या ल्युन भागाने व्यापलेले विमानाचे एकूण प्रमाण म्हणून परिभाषित केले आहे चे मूल्यमापन करण्यासाठी Area of Large Lune = (pi*(ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2-चंद्राच्या लहान वर्तुळाची त्रिज्या^2))+(2*ल्युनच्या त्रिकोणाचे क्षेत्रफळ)+(चंद्राच्या लहान वर्तुळाची त्रिज्या^2*arccos((ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2-चंद्राच्या लहान वर्तुळाची त्रिज्या^2-ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर^2)/(2*चंद्राच्या लहान वर्तुळाची त्रिज्या*ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर)))-(ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2*arccos((ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2+ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर^2-चंद्राच्या लहान वर्तुळाची त्रिज्या^2)/(2*ल्युनच्या मोठ्या वर्तुळाची त्रिज्या*ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर))) वापरतो. मोठ्या लुनचे क्षेत्र हे ALarge चिन्हाने दर्शविले जाते.

हा ऑनलाइन मूल्यांकनकर्ता वापरून मोठ्या लुनचे क्षेत्र चे मूल्यमापन कसे करायचे? हा ऑनलाइन मूल्यांकनकर्ता मोठ्या लुनचे क्षेत्र साठी वापरण्यासाठी, ल्युनच्या मोठ्या वर्तुळाची त्रिज्या (rLarger), चंद्राच्या लहान वर्तुळाची त्रिज्या (rSmaller), ल्युनच्या त्रिकोणाचे क्षेत्रफळ (ATriangle) & ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर (dCenters) प्रविष्ट करा आणि गणना बटण दाबा.

FAQs वर मोठ्या लुनचे क्षेत्र

मोठ्या लुनचे क्षेत्र शोधण्याचे सूत्र काय आहे?
मोठ्या लुनचे क्षेत्र चे सूत्र Area of Large Lune = (pi*(ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2-चंद्राच्या लहान वर्तुळाची त्रिज्या^2))+(2*ल्युनच्या त्रिकोणाचे क्षेत्रफळ)+(चंद्राच्या लहान वर्तुळाची त्रिज्या^2*arccos((ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2-चंद्राच्या लहान वर्तुळाची त्रिज्या^2-ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर^2)/(2*चंद्राच्या लहान वर्तुळाची त्रिज्या*ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर)))-(ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2*arccos((ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2+ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर^2-चंद्राच्या लहान वर्तुळाची त्रिज्या^2)/(2*ल्युनच्या मोठ्या वर्तुळाची त्रिज्या*ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर))) म्हणून व्यक्त केले आहे. येथे एक उदाहरण आहे- 185.0336 = (pi*(8^2-5^2))+(2*20)+(5^2*arccos((8^2-5^2-10^2)/(2*5*10)))-(8^2*arccos((8^2+10^2-5^2)/(2*8*10))).
मोठ्या लुनचे क्षेत्र ची गणना कशी करायची?
ल्युनच्या मोठ्या वर्तुळाची त्रिज्या (rLarger), चंद्राच्या लहान वर्तुळाची त्रिज्या (rSmaller), ल्युनच्या त्रिकोणाचे क्षेत्रफळ (ATriangle) & ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर (dCenters) सह आम्ही सूत्र - Area of Large Lune = (pi*(ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2-चंद्राच्या लहान वर्तुळाची त्रिज्या^2))+(2*ल्युनच्या त्रिकोणाचे क्षेत्रफळ)+(चंद्राच्या लहान वर्तुळाची त्रिज्या^2*arccos((ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2-चंद्राच्या लहान वर्तुळाची त्रिज्या^2-ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर^2)/(2*चंद्राच्या लहान वर्तुळाची त्रिज्या*ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर)))-(ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2*arccos((ल्युनच्या मोठ्या वर्तुळाची त्रिज्या^2+ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर^2-चंद्राच्या लहान वर्तुळाची त्रिज्या^2)/(2*ल्युनच्या मोठ्या वर्तुळाची त्रिज्या*ल्युनच्या वर्तुळांच्या केंद्रांचे अंतर))) वापरून मोठ्या लुनचे क्षेत्र शोधू शकतो. हे सूत्र आर्किमिडीजचा स्थिरांक आणि , कोसाइन (कॉस), व्यस्त कोसाइन (आर्ककोस) फंक्शन(s) देखील वापरते.
मोठ्या लुनचे क्षेत्र नकारात्मक असू शकते का?
नाही, मोठ्या लुनचे क्षेत्र, क्षेत्रफळ मध्ये मोजलेले करू शकत नाही ऋण असू शकते.
मोठ्या लुनचे क्षेत्र मोजण्यासाठी कोणते एकक वापरले जाते?
मोठ्या लुनचे क्षेत्र हे सहसा क्षेत्रफळ साठी चौरस मीटर[m²] वापरून मोजले जाते. चौरस किलोमीटर[m²], चौरस सेंटीमीटर[m²], चौरस मिलिमीटर[m²] ही काही इतर एकके आहेत ज्यात मोठ्या लुनचे क्षेत्र मोजता येतात.
Copied!