Fx copia
LaTeX copia
L'energia termica è l'energia termica in ingresso a un dato sistema. Questa energia termica in ingresso viene convertita in lavoro utile e una parte di essa viene sprecata nel farlo. Controlla FAQs
Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-6)([BoltZ]T)
Qin - Energia termica?T - Temperatura?Iy - Momento di inerzia lungo l'asse Y?ωy - Velocità angolare lungo l'asse Y?Iz - Momento di inerzia lungo l'asse Z?ωz - Velocità angolare lungo l'asse Z?N - Atomicita?[BoltZ] - Costante di Boltzmann?[BoltZ] - Costante di Boltzmann?

Esempio di Energia termica media della molecola di gas poliatomico non lineare

Con valori
Con unità
Unico esempio

Ecco come appare l'equazione Energia termica media della molecola di gas poliatomico non lineare con Valori.

Ecco come appare l'equazione Energia termica media della molecola di gas poliatomico non lineare con unità.

Ecco come appare l'equazione Energia termica media della molecola di gas poliatomico non lineare.

27.0348Edit=((32)1.4E-2385Edit)+((0.560Edit(35Edit2))+(0.565Edit(40Edit2)))+((33Edit)-6)(1.4E-2385Edit)
copia
Ripristina
Condividere
Tu sei qui -
HomeIcon Casa » Category Chimica » Category Teoria cinetica dei gas » Category Principio di equipaggiamento e capacità termica » fx Energia termica media della molecola di gas poliatomico non lineare

Energia termica media della molecola di gas poliatomico non lineare Soluzione

Segui la nostra soluzione passo passo su come calcolare Energia termica media della molecola di gas poliatomico non lineare?

Primo passo Considera la formula
Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-6)([BoltZ]T)
Passo successivo Valori sostitutivi delle variabili
Qin=((32)[BoltZ]85K)+((0.560kg·m²(35degree/s2))+(0.565kg·m²(40degree/s2)))+((33)-6)([BoltZ]85K)
Passo successivo Valori sostitutivi delle costanti
Qin=((32)1.4E-23J/K85K)+((0.560kg·m²(35degree/s2))+(0.565kg·m²(40degree/s2)))+((33)-6)(1.4E-23J/K85K)
Passo successivo Converti unità
Qin=((32)1.4E-23J/K85K)+((0.560kg·m²(0.6109rad/s2))+(0.565kg·m²(0.6981rad/s2)))+((33)-6)(1.4E-23J/K85K)
Passo successivo Preparati a valutare
Qin=((32)1.4E-2385)+((0.560(0.61092))+(0.565(0.69812)))+((33)-6)(1.4E-2385)
Passo successivo Valutare
Qin=27.0347960060603J
Ultimo passo Risposta arrotondata
Qin=27.0348J

Energia termica media della molecola di gas poliatomico non lineare Formula Elementi

Variabili
Costanti
Energia termica
L'energia termica è l'energia termica in ingresso a un dato sistema. Questa energia termica in ingresso viene convertita in lavoro utile e una parte di essa viene sprecata nel farlo.
Simbolo: Qin
Misurazione: EnergiaUnità: J
Nota: Il valore deve essere maggiore di 0.
Temperatura
La temperatura è il grado o l'intensità del calore presente in una sostanza o in un oggetto.
Simbolo: T
Misurazione: TemperaturaUnità: K
Nota: Il valore può essere positivo o negativo.
Momento di inerzia lungo l'asse Y
Il momento di inerzia lungo l'asse Y di un corpo rigido è una quantità che determina la coppia necessaria per un'accelerazione angolare desiderata attorno all'asse Y.
Simbolo: Iy
Misurazione: Momento d'inerziaUnità: kg·m²
Nota: Il valore può essere positivo o negativo.
Velocità angolare lungo l'asse Y
La velocità angolare lungo l'asse Y, nota anche come vettore di frequenza angolare, è una misura vettoriale della velocità di rotazione, che si riferisce alla velocità con cui un oggetto ruota o ruota rispetto a un altro punto.
Simbolo: ωy
Misurazione: Velocità angolareUnità: degree/s
Nota: Il valore può essere positivo o negativo.
Momento di inerzia lungo l'asse Z
Il momento di inerzia lungo l'asse Z di un corpo rigido è una quantità che determina la coppia necessaria per un'accelerazione angolare desiderata attorno all'asse Z.
Simbolo: Iz
Misurazione: Momento d'inerziaUnità: kg·m²
Nota: Il valore può essere positivo o negativo.
Velocità angolare lungo l'asse Z
La velocità angolare lungo l'asse Z, nota anche come vettore di frequenza angolare, è una misura vettoriale della velocità di rotazione, che si riferisce alla velocità con cui un oggetto ruota o ruota rispetto a un altro punto.
Simbolo: ωz
Misurazione: Velocità angolareUnità: degree/s
Nota: Il valore può essere positivo o negativo.
Atomicita
L'atomicità è definita come il numero totale di atomi presenti in una molecola o elemento.
Simbolo: N
Misurazione: NAUnità: Unitless
Nota: Il valore può essere positivo o negativo.
Costante di Boltzmann
La costante di Boltzmann mette in relazione l'energia cinetica media delle particelle in un gas con la temperatura del gas ed è una costante fondamentale nella meccanica statistica e nella termodinamica.
Simbolo: [BoltZ]
Valore: 1.38064852E-23 J/K
Costante di Boltzmann
La costante di Boltzmann mette in relazione l'energia cinetica media delle particelle in un gas con la temperatura del gas ed è una costante fondamentale nella meccanica statistica e nella termodinamica.
Simbolo: [BoltZ]
Valore: 1.38064852E-23 J/K

Altre formule per trovare Energia termica

​va Energia termica media della molecola di gas poliatomico lineare
Qin=((32)[BoltZ]T)+((0.5Iy(ωy2))+(0.5Iz(ωz2)))+((3N)-5)([BoltZ]T)

Altre formule nella categoria Principio di equipaggiamento e capacità termica

​va Energia traslazionale
ET=(px22Massflight path)+(py22Massflight path)+(pz22Massflight path)
​va Energia di rotazione della molecola lineare
Erot=(0.5Iy(ωy2))+(0.5Iz(ωz2))

Come valutare Energia termica media della molecola di gas poliatomico non lineare?

Il valutatore Energia termica media della molecola di gas poliatomico non lineare utilizza Thermal Energy = ((3/2)*[BoltZ]*Temperatura)+((0.5*Momento di inerzia lungo l'asse Y*(Velocità angolare lungo l'asse Y^2))+(0.5*Momento di inerzia lungo l'asse Z*(Velocità angolare lungo l'asse Z^2)))+((3*Atomicita)-6)*([BoltZ]*Temperatura) per valutare Energia termica, L'energia termica media della molecola di gas poliatomica non lineare viene prodotta quando un aumento della temperatura fa sì che atomi e molecole si muovano più velocemente e entrino in collisione tra loro. Energia termica è indicato dal simbolo Qin.

Come valutare Energia termica media della molecola di gas poliatomico non lineare utilizzando questo valutatore online? Per utilizzare questo valutatore online per Energia termica media della molecola di gas poliatomico non lineare, inserisci Temperatura (T), Momento di inerzia lungo l'asse Y (Iy), Velocità angolare lungo l'asse Y y), Momento di inerzia lungo l'asse Z (Iz), Velocità angolare lungo l'asse Z z) & Atomicita (N) e premi il pulsante Calcola.

FAQs SU Energia termica media della molecola di gas poliatomico non lineare

Qual è la formula per trovare Energia termica media della molecola di gas poliatomico non lineare?
La formula di Energia termica media della molecola di gas poliatomico non lineare è espressa come Thermal Energy = ((3/2)*[BoltZ]*Temperatura)+((0.5*Momento di inerzia lungo l'asse Y*(Velocità angolare lungo l'asse Y^2))+(0.5*Momento di inerzia lungo l'asse Z*(Velocità angolare lungo l'asse Z^2)))+((3*Atomicita)-6)*([BoltZ]*Temperatura). Ecco un esempio: 27.0348 = ((3/2)*[BoltZ]*85)+((0.5*60*(0.610865238197901^2))+(0.5*65*(0.698131700797601^2)))+((3*3)-6)*([BoltZ]*85).
Come calcolare Energia termica media della molecola di gas poliatomico non lineare?
Con Temperatura (T), Momento di inerzia lungo l'asse Y (Iy), Velocità angolare lungo l'asse Y y), Momento di inerzia lungo l'asse Z (Iz), Velocità angolare lungo l'asse Z z) & Atomicita (N) possiamo trovare Energia termica media della molecola di gas poliatomico non lineare utilizzando la formula - Thermal Energy = ((3/2)*[BoltZ]*Temperatura)+((0.5*Momento di inerzia lungo l'asse Y*(Velocità angolare lungo l'asse Y^2))+(0.5*Momento di inerzia lungo l'asse Z*(Velocità angolare lungo l'asse Z^2)))+((3*Atomicita)-6)*([BoltZ]*Temperatura). Questa formula utilizza anche Costante di Boltzmann, Costante di Boltzmann .
Quali sono gli altri modi per calcolare Energia termica?
Ecco i diversi modi per calcolare Energia termica-
  • Thermal Energy=((3/2)*[BoltZ]*Temperature)+((0.5*Moment of Inertia along Y-axis*(Angular Velocity along Y-axis^2))+(0.5*Moment of Inertia along Z-axis*(Angular Velocity along Z-axis^2)))+((3*Atomicity)-5)*([BoltZ]*Temperature)OpenImg
Il Energia termica media della molecola di gas poliatomico non lineare può essere negativo?
NO, Energia termica media della molecola di gas poliatomico non lineare, misurato in Energia non può può essere negativo.
Quale unità viene utilizzata per misurare Energia termica media della molecola di gas poliatomico non lineare?
Energia termica media della molecola di gas poliatomico non lineare viene solitamente misurato utilizzando Joule[J] per Energia. Kilojoule[J], Gigajoule[J], Megajoule[J] sono le poche altre unità in cui è possibile misurare Energia termica media della molecola di gas poliatomico non lineare.
Copied!