Fx प्रतिलिपि
LaTeX प्रतिलिपि
वर्ग का अंतःत्रिज्या वर्ग या वृत्त के अंतःवृत्त की त्रिज्या है, जो वर्ग के सभी किनारों के साथ वर्ग द्वारा समाहित है जो वृत्त को स्पर्श करता है। FAQs जांचें
ri=rc2
ri - स्क्वायर का इनरेडियस?rc - वर्ग की परिधि?

वर्ग की अंतःत्रिज्या दी गई परिधि उदाहरण

मूल्यों के साथ
इकाइयों के साथ
केवल उदाहरण

वर्ग की अंतःत्रिज्या दी गई परिधि समीकरण मूल्यों के साथ जैसा दिखता है।

वर्ग की अंतःत्रिज्या दी गई परिधि समीकरण इकाइयों के साथ जैसा दिखता है।

वर्ग की अंतःत्रिज्या दी गई परिधि समीकरण जैसा दिखता है।

4.9497Edit=7Edit2
प्रतिलिपि
रीसेट
शेयर करना
आप यहां हैं -
HomeIcon घर » Category गणित » Category ज्यामिति » Category 2 डी ज्यामिति » fx वर्ग की अंतःत्रिज्या दी गई परिधि

वर्ग की अंतःत्रिज्या दी गई परिधि समाधान

वर्ग की अंतःत्रिज्या दी गई परिधि की गणना कैसे करें, इसके लिए हमारे चरण-दर-चरण समाधान का पालन करें।

पहला कदम सूत्र पर विचार करें
ri=rc2
अगला कदम चरों के प्रतिस्थापन मान
ri=7m2
अगला कदम मूल्यांकन के लिए तैयार रहें
ri=72
अगला कदम मूल्यांकन करना
ri=4.94974746830583m
अंतिम चरण उत्तर को गोल करना
ri=4.9497m

वर्ग की अंतःत्रिज्या दी गई परिधि FORMULA तत्वों

चर
कार्य
स्क्वायर का इनरेडियस
वर्ग का अंतःत्रिज्या वर्ग या वृत्त के अंतःवृत्त की त्रिज्या है, जो वर्ग के सभी किनारों के साथ वर्ग द्वारा समाहित है जो वृत्त को स्पर्श करता है।
प्रतीक: ri
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
वर्ग की परिधि
वर्ग की परिधि वर्ग के परिवृत्त की त्रिज्या है या वह वृत्त जिसमें वर्ग के सभी कोने वृत्त पर स्थित हैं।
प्रतीक: rc
माप: लंबाईइकाई: m
टिप्पणी: मान 0 से अधिक होना चाहिए.
sqrt
वर्गमूल फ़ंक्शन एक ऐसा फ़ंक्शन है जो एक गैर-ऋणात्मक संख्या को इनपुट के रूप में लेता है और दी गई इनपुट संख्या का वर्गमूल लौटाता है।
वाक्य - विन्यास: sqrt(Number)

स्क्वायर का इनरेडियस खोजने के लिए अन्य सूत्र

​जाना स्क्वायर का इनरेडियस
ri=le2
​जाना वर्ग की अंत:त्रिज्या दी गई विकर्ण
ri=d22
​जाना दी गई परिमाप वर्ग की अंत:त्रिज्या
ri=P8
​जाना दिए गए वर्ग का अंतःत्रिज्या
ri=A2

वर्ग की अंतःत्रिज्या दी गई परिधि का मूल्यांकन कैसे करें?

वर्ग की अंतःत्रिज्या दी गई परिधि मूल्यांकनकर्ता स्क्वायर का इनरेडियस, दिए गए वर्ग के अंतःत्रिज्या सूत्र को वर्ग के अंतःवृत्त की त्रिज्या के रूप में परिभाषित किया गया है या वर्ग के सभी किनारों के साथ वर्ग द्वारा समाहित वृत्त, वृत्त को छूता है, और परिधि का उपयोग करके गणना की जाती है। का मूल्यांकन करने के लिए Inradius of Square = वर्ग की परिधि/(sqrt(2)) का उपयोग करता है। स्क्वायर का इनरेडियस को ri प्रतीक द्वारा दर्शाया जाता है।

इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करके वर्ग की अंतःत्रिज्या दी गई परिधि का मूल्यांकन कैसे करें? वर्ग की अंतःत्रिज्या दी गई परिधि के लिए इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करने के लिए, वर्ग की परिधि (rc) दर्ज करें और गणना बटन दबाएं।

FAQs पर वर्ग की अंतःत्रिज्या दी गई परिधि

वर्ग की अंतःत्रिज्या दी गई परिधि ज्ञात करने का सूत्र क्या है?
वर्ग की अंतःत्रिज्या दी गई परिधि का सूत्र Inradius of Square = वर्ग की परिधि/(sqrt(2)) के रूप में व्यक्त किया जाता है। यहाँ एक उदाहरण दिया गया है- 4.949747 = 7/(sqrt(2)).
वर्ग की अंतःत्रिज्या दी गई परिधि की गणना कैसे करें?
वर्ग की परिधि (rc) के साथ हम वर्ग की अंतःत्रिज्या दी गई परिधि को सूत्र - Inradius of Square = वर्ग की परिधि/(sqrt(2)) का उपयोग करके पा सकते हैं। यह सूत्र वर्गमूल (sqrt) फ़ंक्शन का भी उपयोग करता है.
स्क्वायर का इनरेडियस की गणना करने के अन्य तरीके क्या हैं?
स्क्वायर का इनरेडियस-
  • Inradius of Square=Edge Length of Square/2OpenImg
  • Inradius of Square=Diagonal of Square/(2*sqrt(2))OpenImg
  • Inradius of Square=Perimeter of Square/8OpenImg
की गणना करने के विभिन्न तरीके यहां दिए गए हैं
क्या वर्ग की अंतःत्रिज्या दी गई परिधि ऋणात्मक हो सकता है?
{हां या नहीं}, लंबाई में मापा गया वर्ग की अंतःत्रिज्या दी गई परिधि ऋणात्मक {हो सकता है या नहीं हो सकता}।
वर्ग की अंतःत्रिज्या दी गई परिधि को मापने के लिए किस इकाई का उपयोग किया जाता है?
वर्ग की अंतःत्रिज्या दी गई परिधि को आम तौर पर लंबाई के लिए मीटर[m] का उपयोग करके मापा जाता है। मिलीमीटर[m], किलोमीटर[m], मिटर का दशमांश[m] कुछ अन्य इकाइयाँ हैं जिनमें वर्ग की अंतःत्रिज्या दी गई परिधि को मापा जा सकता है।
Copied!