डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध फॉर्मूला

Fx प्रतिलिपि
LaTeX प्रतिलिपि
तरंग दैर्ध्य अंतरिक्ष में या एक तार के साथ प्रचारित तरंग संकेत के आसन्न चक्रों में समान बिंदुओं (आसन्न क्रेस्ट) के बीच की दूरी है। FAQs जांचें
λ=[hP]2KEm
λ - वेवलेंथ?KE - गतिज ऊर्जा?m - गतिमान इलेक्ट्रॉन का द्रव्यमान?[hP] - प्लैंक स्थिरांक?

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध उदाहरण

मूल्यों के साथ
इकाइयों के साथ
केवल उदाहरण

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध समीकरण मूल्यों के साथ जैसा दिखता है।

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध समीकरण इकाइयों के साथ जैसा दिखता है।

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध समीकरण जैसा दिखता है।

5E-12Edit=6.6E-34275Edit0.07Edit
प्रतिलिपि
रीसेट
शेयर करना
आप यहां हैं -
HomeIcon घर » Category रसायन विज्ञान » Category परमाण्विक संरचना » Category डी ब्रोगली परिकल्पना » fx डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध समाधान

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध की गणना कैसे करें, इसके लिए हमारे चरण-दर-चरण समाधान का पालन करें।

पहला कदम सूत्र पर विचार करें
λ=[hP]2KEm
अगला कदम चरों के प्रतिस्थापन मान
λ=[hP]275J0.07Dalton
अगला कदम स्थिरांकों के प्रतिस्थापन मान
λ=6.6E-34275J0.07Dalton
अगला कदम इकाइयों को परिवर्तित करें
λ=6.6E-34275J1.2E-28kg
अगला कदम मूल्यांकन के लिए तैयार रहें
λ=6.6E-342751.2E-28
अगला कदम मूल्यांकन करना
λ=5.01808495537865E-21m
अगला कदम आउटपुट की इकाई में परिवर्तित करें
λ=5.01808495537865E-12nm
अंतिम चरण उत्तर को गोल करना
λ=5E-12nm

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध FORMULA तत्वों

चर
स्थिरांक
कार्य
वेवलेंथ
तरंग दैर्ध्य अंतरिक्ष में या एक तार के साथ प्रचारित तरंग संकेत के आसन्न चक्रों में समान बिंदुओं (आसन्न क्रेस्ट) के बीच की दूरी है।
प्रतीक: λ
माप: वेवलेंथइकाई: nm
टिप्पणी: मूल्य सकारात्मक या नकारात्मक हो सकता है.
गतिज ऊर्जा
गतिज ऊर्जा किसी दिए गए द्रव्यमान के शरीर को आराम से उसके कथित वेग में तेजी लाने के लिए आवश्यक कार्य के रूप में परिभाषित किया गया है। अपने त्वरण के दौरान इस ऊर्जा को प्राप्त करने के बाद, शरीर इस गतिज ऊर्जा को बनाए रखता है जब तक कि इसकी गति में परिवर्तन न हो।
प्रतीक: KE
माप: ऊर्जाइकाई: J
टिप्पणी: मूल्य सकारात्मक या नकारात्मक हो सकता है.
गतिमान इलेक्ट्रॉन का द्रव्यमान
गतिमान इलेक्ट्रॉन का द्रव्यमान एक इलेक्ट्रॉन का द्रव्यमान होता है, जो कुछ वेग से गति करता है।
प्रतीक: m
माप: वज़नइकाई: Dalton
टिप्पणी: मूल्य सकारात्मक या नकारात्मक हो सकता है.
प्लैंक स्थिरांक
प्लैंक स्थिरांक एक मौलिक सार्वभौमिक स्थिरांक है जो ऊर्जा की क्वांटम प्रकृति को परिभाषित करता है और एक फोटॉन की ऊर्जा को उसकी आवृत्ति से जोड़ता है।
प्रतीक: [hP]
कीमत: 6.626070040E-34
sqrt
वर्गमूल फ़ंक्शन एक ऐसा फ़ंक्शन है जो एक गैर-ऋणात्मक संख्या को इनपुट के रूप में लेता है और दी गई इनपुट संख्या का वर्गमूल लौटाता है।
वाक्य - विन्यास: sqrt(Number)

डी ब्रोगली परिकल्पना श्रेणी में अन्य सूत्र

​जाना वृत्ताकार कक्षा में कण की डी ब्रोगली तरंगदैर्ध्य
λCO=2πrorbitnquantum
​जाना इलेक्ट्रॉन की क्रांतियों की संख्या
nsec=ve2πrorbit
​जाना संभावित दिए गए आवेशित कण की डी ब्रोगली तरंग दैर्ध्य
λP=[hP]2[Charge-e]Vm
​जाना इलेक्ट्रॉन के लिए डी ब्रोग्ली तरंगदैर्ध्य दी गई क्षमता
λPE=12.27V

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध का मूल्यांकन कैसे करें?

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध मूल्यांकनकर्ता वेवलेंथ, डी ब्रोगली तरंगदैर्घ्य और कण की गतिज ऊर्जा के बीच संबंध एक कण/इलेक्ट्रॉन से जुड़ा होता है और प्लैंक स्थिरांक, एच के माध्यम से इसके द्रव्यमान, एम और गतिज ऊर्जा, केई से संबंधित होता है। का मूल्यांकन करने के लिए Wavelength = [hP]/sqrt(2*गतिज ऊर्जा*गतिमान इलेक्ट्रॉन का द्रव्यमान) का उपयोग करता है। वेवलेंथ को λ प्रतीक द्वारा दर्शाया जाता है।

इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करके डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध का मूल्यांकन कैसे करें? डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध के लिए इस ऑनलाइन मूल्यांकनकर्ता का उपयोग करने के लिए, गतिज ऊर्जा (KE) & गतिमान इलेक्ट्रॉन का द्रव्यमान (m) दर्ज करें और गणना बटन दबाएं।

FAQs पर डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध

डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध ज्ञात करने का सूत्र क्या है?
डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध का सूत्र Wavelength = [hP]/sqrt(2*गतिज ऊर्जा*गतिमान इलेक्ट्रॉन का द्रव्यमान) के रूप में व्यक्त किया जाता है। यहाँ एक उदाहरण दिया गया है- 0.005018 = [hP]/sqrt(2*75*1.16237100006849E-28).
डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध की गणना कैसे करें?
गतिज ऊर्जा (KE) & गतिमान इलेक्ट्रॉन का द्रव्यमान (m) के साथ हम डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध को सूत्र - Wavelength = [hP]/sqrt(2*गतिज ऊर्जा*गतिमान इलेक्ट्रॉन का द्रव्यमान) का उपयोग करके पा सकते हैं। यह सूत्र प्लैंक स्थिरांक और वर्गमूल (sqrt) फ़ंक्शन का भी उपयोग करता है.
क्या डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध ऋणात्मक हो सकता है?
{हां या नहीं}, वेवलेंथ में मापा गया डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध ऋणात्मक {हो सकता है या नहीं हो सकता}।
डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध को मापने के लिए किस इकाई का उपयोग किया जाता है?
डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध को आम तौर पर वेवलेंथ के लिए नैनोमीटर[nm] का उपयोग करके मापा जाता है। मीटर[nm], मेगामीटर[nm], किलोमीटर[nm] कुछ अन्य इकाइयाँ हैं जिनमें डी ब्रोगली तरंगदैर्ध्य और कण की गतिज ऊर्जा के बीच संबंध को मापा जा सकता है।
Copied!