Fx Copie
LaTeX Copie
Le rayon intérieur de l'hémisphère creux est un segment de ligne allant du centre à un point sur la surface incurvée de la base circulaire intérieure de l'hémisphère creux. Vérifiez FAQs
rInner=(rOuter3-3V2π)13
rInner - Rayon intérieur de l'hémisphère creux?rOuter - Rayon extérieur de l'hémisphère creux?V - Volume de l'hémisphère creux?π - Constante d'Archimède?

Exemple Rayon intérieur de l'hémisphère creux étant donné le volume

Avec des valeurs
Avec unités
Seul exemple

Voici à quoi ressemble l'équation Rayon intérieur de l'hémisphère creux étant donné le volume avec des valeurs.

Voici à quoi ressemble l'équation Rayon intérieur de l'hémisphère creux étant donné le volume avec unités.

Voici à quoi ressemble l'équation Rayon intérieur de l'hémisphère creux étant donné le volume.

9.9996Edit=(12Edit3-31525Edit23.1416)13
Tu es là -
HomeIcon Maison » Category Math » Category Géométrie » Category Géométrie 3D » fx Rayon intérieur de l'hémisphère creux étant donné le volume

Rayon intérieur de l'hémisphère creux étant donné le volume Solution

Suivez notre solution étape par étape pour savoir comment calculer Rayon intérieur de l'hémisphère creux étant donné le volume ?

Premier pas Considérez la formule
rInner=(rOuter3-3V2π)13
L'étape suivante Valeurs de remplacement des variables
rInner=(12m3-315252π)13
L'étape suivante Valeurs de remplacement des constantes
rInner=(12m3-3152523.1416)13
L'étape suivante Préparez-vous à évaluer
rInner=(123-3152523.1416)13
L'étape suivante Évaluer
rInner=9.99955376460295m
Dernière étape Réponse arrondie
rInner=9.9996m

Rayon intérieur de l'hémisphère creux étant donné le volume Formule Éléments

Variables
Constantes
Rayon intérieur de l'hémisphère creux
Le rayon intérieur de l'hémisphère creux est un segment de ligne allant du centre à un point sur la surface incurvée de la base circulaire intérieure de l'hémisphère creux.
Symbole: rInner
La mesure: LongueurUnité: m
Note: La valeur doit être supérieure à 0.
Rayon extérieur de l'hémisphère creux
Le rayon extérieur de l'hémisphère creux est un segment de ligne allant du centre à un point sur la surface incurvée de la base circulaire extérieure de l'hémisphère creux.
Symbole: rOuter
La mesure: LongueurUnité: m
Note: La valeur doit être supérieure à 0.
Volume de l'hémisphère creux
Le volume de l'hémisphère creux est la mesure de l'espace tridimensionnel entouré de toutes les faces de l'hémisphère creux.
Symbole: V
La mesure: VolumeUnité:
Note: La valeur doit être supérieure à 0.
Constante d'Archimède
La constante d'Archimède est une constante mathématique qui représente le rapport entre la circonférence d'un cercle et son diamètre.
Symbole: π
Valeur: 3.14159265358979323846264338327950288

Autres formules pour trouver Rayon intérieur de l'hémisphère creux

​va Rayon intérieur de l'hémisphère creux
rInner=rOuter-tShell
​va Rayon intérieur de l'hémisphère creux compte tenu de la surface totale
rInner=(TSAπ)-(3(rOuter)2)

Comment évaluer Rayon intérieur de l'hémisphère creux étant donné le volume ?

L'évaluateur Rayon intérieur de l'hémisphère creux étant donné le volume utilise Inner Radius of Hollow Hemisphere = (Rayon extérieur de l'hémisphère creux^3-(3*Volume de l'hémisphère creux)/(2*pi))^(1/3) pour évaluer Rayon intérieur de l'hémisphère creux, Le rayon intérieur de l'hémisphère creux donné La formule de volume est définie comme le segment de ligne du centre à un point sur la surface incurvée de la base circulaire intérieure de l'hémisphère creux., calculée à l'aide du volume de l'hémisphère creux. Rayon intérieur de l'hémisphère creux est désigné par le symbole rInner.

Comment évaluer Rayon intérieur de l'hémisphère creux étant donné le volume à l'aide de cet évaluateur en ligne ? Pour utiliser cet évaluateur en ligne pour Rayon intérieur de l'hémisphère creux étant donné le volume, saisissez Rayon extérieur de l'hémisphère creux (rOuter) & Volume de l'hémisphère creux (V) et appuyez sur le bouton Calculer.

FAQs sur Rayon intérieur de l'hémisphère creux étant donné le volume

Quelle est la formule pour trouver Rayon intérieur de l'hémisphère creux étant donné le volume ?
La formule de Rayon intérieur de l'hémisphère creux étant donné le volume est exprimée sous la forme Inner Radius of Hollow Hemisphere = (Rayon extérieur de l'hémisphère creux^3-(3*Volume de l'hémisphère creux)/(2*pi))^(1/3). Voici un exemple : 9.999554 = (12^3-(3*1525)/(2*pi))^(1/3).
Comment calculer Rayon intérieur de l'hémisphère creux étant donné le volume ?
Avec Rayon extérieur de l'hémisphère creux (rOuter) & Volume de l'hémisphère creux (V), nous pouvons trouver Rayon intérieur de l'hémisphère creux étant donné le volume en utilisant la formule - Inner Radius of Hollow Hemisphere = (Rayon extérieur de l'hémisphère creux^3-(3*Volume de l'hémisphère creux)/(2*pi))^(1/3). Cette formule utilise également Constante d'Archimède .
Quelles sont les autres façons de calculer Rayon intérieur de l'hémisphère creux ?
Voici les différentes façons de calculer Rayon intérieur de l'hémisphère creux-
  • Inner Radius of Hollow Hemisphere=Outer Radius of Hollow Hemisphere-Shell Thickness of Hollow HemisphereOpenImg
  • Inner Radius of Hollow Hemisphere=sqrt((Total Surface Area of Hollow Hemisphere/pi)-(3*(Outer Radius of Hollow Hemisphere)^2))OpenImg
Le Rayon intérieur de l'hémisphère creux étant donné le volume peut-il être négatif ?
Non, le Rayon intérieur de l'hémisphère creux étant donné le volume, mesuré dans Longueur ne peut pas, doit être négatif.
Quelle unité est utilisée pour mesurer Rayon intérieur de l'hémisphère creux étant donné le volume ?
Rayon intérieur de l'hémisphère creux étant donné le volume est généralement mesuré à l'aide de Mètre[m] pour Longueur. Millimètre[m], Kilomètre[m], Décimètre[m] sont les quelques autres unités dans lesquelles Rayon intérieur de l'hémisphère creux étant donné le volume peut être mesuré.
Copied!