Fx Copie
LaTeX Copie
Le rayon de l'insphère de l'icositétraèdre pentagonal est le rayon de la sphère que l'icositétraèdre pentagonal contient de telle manière que toutes les faces touchent la sphère. Vérifiez FAQs
ri=rm3-[Tribonacci_C]
ri - Rayon de l'insphère de l'icositétraèdre pentagonal?rm - Rayon de la sphère médiane de l'icositétraèdre pentagonal?[Tribonacci_C] - Constante de Tribonacci?

Exemple Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane

Avec des valeurs
Avec unités
Seul exemple

Voici à quoi ressemble l'équation Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane avec des valeurs.

Voici à quoi ressemble l'équation Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane avec unités.

Voici à quoi ressemble l'équation Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane.

12.0665Edit=13Edit3-1.8393

Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane Solution

Suivez notre solution étape par étape pour savoir comment calculer Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane ?

Premier pas Considérez la formule
ri=rm3-[Tribonacci_C]
L'étape suivante Valeurs de remplacement des variables
ri=13m3-[Tribonacci_C]
L'étape suivante Valeurs de remplacement des constantes
ri=13m3-1.8393
L'étape suivante Préparez-vous à évaluer
ri=133-1.8393
L'étape suivante Évaluer
ri=12.0664879138124m
Dernière étape Réponse arrondie
ri=12.0665m

Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane Formule Éléments

Variables
Constantes
Les fonctions
Rayon de l'insphère de l'icositétraèdre pentagonal
Le rayon de l'insphère de l'icositétraèdre pentagonal est le rayon de la sphère que l'icositétraèdre pentagonal contient de telle manière que toutes les faces touchent la sphère.
Symbole: ri
La mesure: LongueurUnité: m
Note: La valeur doit être supérieure à 0.
Rayon de la sphère médiane de l'icositétraèdre pentagonal
Le rayon médian de la sphère de l'icositétraèdre pentagonal est le rayon de la sphère pour laquelle toutes les arêtes de l'icositétraèdre pentagonal deviennent une ligne tangente à cette sphère.
Symbole: rm
La mesure: LongueurUnité: m
Note: La valeur doit être supérieure à 0.
Constante de Tribonacci
La constante de Tribonacci est la limite du rapport du nième terme au (n-1)ième terme de la séquence de Tribonacci lorsque n s'approche de l'infini.
Symbole: [Tribonacci_C]
Valeur: 1.839286755214161
sqrt
Une fonction racine carrée est une fonction qui prend un nombre non négatif comme entrée et renvoie la racine carrée du nombre d'entrée donné.
Syntaxe: sqrt(Number)

Autres formules pour trouver Rayon de l'insphère de l'icositétraèdre pentagonal

​va Rayon de l'insphère de l'icositétraèdre pentagonal compte tenu de l'arête longue
ri=le(Long)(2-[Tribonacci_C])(3-[Tribonacci_C])([Tribonacci_C]+1)
​va Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le volume
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(V13(2((20[Tribonacci_C])-37)11([Tribonacci_C]-4))16)
​va Rayon dans la sphère de l'icositétraèdre pentagonal compte tenu de la surface totale
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(TSA3((4[Tribonacci_C])-322((5[Tribonacci_C])-1))14)
​va Rayon dans la sphère de l'icositétraèdre pentagonal compte tenu du rapport surface/volume
ri=(12(2-[Tribonacci_C])(3-[Tribonacci_C]))(322(5[Tribonacci_C]-1)(4[Tribonacci_C])-3RA/V11([Tribonacci_C]-4)2((20[Tribonacci_C])-37))

Comment évaluer Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane ?

L'évaluateur Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane utilise Insphere Radius of Pentagonal Icositetrahedron = Rayon de la sphère médiane de l'icositétraèdre pentagonal/sqrt(3-[Tribonacci_C]) pour évaluer Rayon de l'insphère de l'icositétraèdre pentagonal, Le rayon de la sphère de l'icositétraèdre pentagonal étant donné la formule du rayon médian de la sphère est défini comme le rayon de la sphère que l'icositétraèdre pentagonal contient de telle manière que toutes les faces touchent la sphère, calculé à l'aide du rayon de la sphère médiane de l'icositétraèdre pentagonal. Rayon de l'insphère de l'icositétraèdre pentagonal est désigné par le symbole ri.

Comment évaluer Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane à l'aide de cet évaluateur en ligne ? Pour utiliser cet évaluateur en ligne pour Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane, saisissez Rayon de la sphère médiane de l'icositétraèdre pentagonal (rm) et appuyez sur le bouton Calculer.

FAQs sur Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane

Quelle est la formule pour trouver Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane ?
La formule de Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane est exprimée sous la forme Insphere Radius of Pentagonal Icositetrahedron = Rayon de la sphère médiane de l'icositétraèdre pentagonal/sqrt(3-[Tribonacci_C]). Voici un exemple : 12.06649 = 13/sqrt(3-[Tribonacci_C]).
Comment calculer Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane ?
Avec Rayon de la sphère médiane de l'icositétraèdre pentagonal (rm), nous pouvons trouver Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane en utilisant la formule - Insphere Radius of Pentagonal Icositetrahedron = Rayon de la sphère médiane de l'icositétraèdre pentagonal/sqrt(3-[Tribonacci_C]). Cette formule utilise également les fonctions Constante de Tribonacci et Racine carrée (sqrt).
Quelles sont les autres façons de calculer Rayon de l'insphère de l'icositétraèdre pentagonal ?
Voici les différentes façons de calculer Rayon de l'insphère de l'icositétraèdre pentagonal-
  • Insphere Radius of Pentagonal Icositetrahedron=Long Edge of Pentagonal Icositetrahedron/sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C])*([Tribonacci_C]+1))OpenImg
  • Insphere Radius of Pentagonal Icositetrahedron=(1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*(Volume of Pentagonal Icositetrahedron^(1/3)*((2*((20*[Tribonacci_C])-37))/(11*([Tribonacci_C]-4)))^(1/6))OpenImg
  • Insphere Radius of Pentagonal Icositetrahedron=(1/(2*sqrt((2-[Tribonacci_C])*(3-[Tribonacci_C]))))*(sqrt(Total Surface Area of Pentagonal Icositetrahedron/3)*(((4*[Tribonacci_C])-3)/(22*((5*[Tribonacci_C])-1)))^(1/4))OpenImg
Le Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane peut-il être négatif ?
Non, le Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane, mesuré dans Longueur ne peut pas, doit être négatif.
Quelle unité est utilisée pour mesurer Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane ?
Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane est généralement mesuré à l'aide de Mètre[m] pour Longueur. Millimètre[m], Kilomètre[m], Décimètre[m] sont les quelques autres unités dans lesquelles Rayon de l'insphère de l'icositétraèdre pentagonal étant donné le rayon de la sphère médiane peut être mesuré.
Copied!