Fx Copie
LaTeX Copie
La pression osmotique est la pression minimale qui doit être appliquée à une solution pour empêcher l'écoulement vers l'intérieur de son solvant pur à travers une membrane semi-perméable. Vérifiez FAQs
π=((C1V1)+(C2V2))([R]T)V1+V2
π - Pression osmotique?C1 - Concentration de particule 1?V1 - Volume de particule 1?C2 - Concentration de particule 2?V2 - Volume de particule 2?T - Température?[R] - Constante du gaz universel?

Exemple Pression osmotique compte tenu du volume et de la concentration de deux substances

Avec des valeurs
Avec unités
Seul exemple

Voici à quoi ressemble l'équation Pression osmotique compte tenu du volume et de la concentration de deux substances avec des valeurs.

Voici à quoi ressemble l'équation Pression osmotique compte tenu du volume et de la concentration de deux substances avec unités.

Voici à quoi ressemble l'équation Pression osmotique compte tenu du volume et de la concentration de deux substances.

2.0313Edit=((8.2E-7Edit20Edit)+(1.9E-7Edit0.005Edit))(8.3145298Edit)20Edit+0.005Edit
Tu es là -
HomeIcon Maison » Category Chimie » Category Solution et propriétés colligatives » Category Pression osmotique » fx Pression osmotique compte tenu du volume et de la concentration de deux substances

Pression osmotique compte tenu du volume et de la concentration de deux substances Solution

Suivez notre solution étape par étape pour savoir comment calculer Pression osmotique compte tenu du volume et de la concentration de deux substances ?

Premier pas Considérez la formule
π=((C1V1)+(C2V2))([R]T)V1+V2
L'étape suivante Valeurs de remplacement des variables
π=((8.2E-7mol/L20L)+(1.9E-7mol/L0.005L))([R]298K)20L+0.005L
L'étape suivante Valeurs de remplacement des constantes
π=((8.2E-7mol/L20L)+(1.9E-7mol/L0.005L))(8.3145298K)20L+0.005L
L'étape suivante Convertir des unités
π=((0.0008mol/m³20L)+(0.0002mol/m³0.005L))(8.3145298K)20L+0.005L
L'étape suivante Préparez-vous à évaluer
π=((0.000820)+(0.00020.005))(8.3145298)20+0.005
L'étape suivante Évaluer
π=2.03133132433174Pa
Dernière étape Réponse arrondie
π=2.0313Pa

Pression osmotique compte tenu du volume et de la concentration de deux substances Formule Éléments

Variables
Constantes
Pression osmotique
La pression osmotique est la pression minimale qui doit être appliquée à une solution pour empêcher l'écoulement vers l'intérieur de son solvant pur à travers une membrane semi-perméable.
Symbole: π
La mesure: PressionUnité: Pa
Note: La valeur doit être supérieure à 0.
Concentration de particule 1
La concentration de la particule 1 est en moles par litre de volume de particule 1 en solution.
Symbole: C1
La mesure: Concentration molaireUnité: mol/L
Note: La valeur peut être positive ou négative.
Volume de particule 1
Le volume de la particule 1 est le volume de la particule 1 en solution.
Symbole: V1
La mesure: VolumeUnité: L
Note: La valeur doit être supérieure à 0.
Concentration de particule 2
La concentration de particule 2 est en moles par litre de volume de particule 2 en solution.
Symbole: C2
La mesure: Concentration molaireUnité: mol/L
Note: La valeur peut être positive ou négative.
Volume de particule 2
Le volume de la particule 2 est le volume de la particule 2 en solution.
Symbole: V2
La mesure: VolumeUnité: L
Note: La valeur doit être supérieure à 0.
Température
La température est le degré ou l'intensité de la chaleur présente dans une substance ou un objet.
Symbole: T
La mesure: TempératureUnité: K
Note: La valeur peut être positive ou négative.
Constante du gaz universel
La constante universelle des gaz est une constante physique fondamentale qui apparaît dans la loi des gaz parfaits, reliant la pression, le volume et la température d'un gaz parfait.
Symbole: [R]
Valeur: 8.31446261815324

Autres formules pour trouver Pression osmotique

​va Pression osmotique en fonction du volume et de la pression osmotique de deux substances
π=(π1V1)+(π2V2)[R]T
​va Pression osmotique en utilisant le nombre de moles et le volume de solution
π=n[R]TV
​va Pression osmotique donnée Concentration de deux substances
π=(C1+C2)[R]T
​va Pression osmotique donnée Densité de solution
π=ρsol[g]h

Autres formules dans la catégorie Pression osmotique

​va Densité de la solution compte tenu de la pression osmotique
ρsol=π[g]h
​va Hauteur d'équilibre compte tenu de la pression osmotique
h=π[g]ρsol
​va Moles de soluté compte tenu de la pression osmotique
n=πV[R]T
​va Volume de solution donné Pression osmotique
V=n[R]Tπ

Comment évaluer Pression osmotique compte tenu du volume et de la concentration de deux substances ?

L'évaluateur Pression osmotique compte tenu du volume et de la concentration de deux substances utilise Osmotic Pressure = (((Concentration de particule 1*Volume de particule 1)+(Concentration de particule 2*Volume de particule 2))*([R]*Température))/(Volume de particule 1+Volume de particule 2) pour évaluer Pression osmotique, La pression osmotique compte tenu du volume et de la concentration de deux substances est la pression minimale qui doit être appliquée à une solution pour empêcher l'écoulement vers l'intérieur de son solvant pur à travers une membrane semi-perméable. Il est également défini comme la mesure de la tendance d'une solution à prendre en solvant pur par osmose. Pression osmotique est désigné par le symbole π.

Comment évaluer Pression osmotique compte tenu du volume et de la concentration de deux substances à l'aide de cet évaluateur en ligne ? Pour utiliser cet évaluateur en ligne pour Pression osmotique compte tenu du volume et de la concentration de deux substances, saisissez Concentration de particule 1 (C1), Volume de particule 1 (V1), Concentration de particule 2 (C2), Volume de particule 2 (V2) & Température (T) et appuyez sur le bouton Calculer.

FAQs sur Pression osmotique compte tenu du volume et de la concentration de deux substances

Quelle est la formule pour trouver Pression osmotique compte tenu du volume et de la concentration de deux substances ?
La formule de Pression osmotique compte tenu du volume et de la concentration de deux substances est exprimée sous la forme Osmotic Pressure = (((Concentration de particule 1*Volume de particule 1)+(Concentration de particule 2*Volume de particule 2))*([R]*Température))/(Volume de particule 1+Volume de particule 2). Voici un exemple : 2.031331 = (((0.00082*0.02)+(0.000189*5E-06))*([R]*298))/(0.02+5E-06).
Comment calculer Pression osmotique compte tenu du volume et de la concentration de deux substances ?
Avec Concentration de particule 1 (C1), Volume de particule 1 (V1), Concentration de particule 2 (C2), Volume de particule 2 (V2) & Température (T), nous pouvons trouver Pression osmotique compte tenu du volume et de la concentration de deux substances en utilisant la formule - Osmotic Pressure = (((Concentration de particule 1*Volume de particule 1)+(Concentration de particule 2*Volume de particule 2))*([R]*Température))/(Volume de particule 1+Volume de particule 2). Cette formule utilise également Constante du gaz universel .
Quelles sont les autres façons de calculer Pression osmotique ?
Voici les différentes façons de calculer Pression osmotique-
  • Osmotic Pressure=((Osmotic Pressure of Particle 1*Volume of Particle 1)+(Osmotic Pressure of Particle 2*Volume of Particle 2))/([R]*Temperature)OpenImg
  • Osmotic Pressure=(Number of Moles of Solute*[R]*Temperature)/Volume of SolutionOpenImg
  • Osmotic Pressure=(Concentration of Particle 1+Concentration of Particle 2)*[R]*TemperatureOpenImg
Le Pression osmotique compte tenu du volume et de la concentration de deux substances peut-il être négatif ?
Oui, le Pression osmotique compte tenu du volume et de la concentration de deux substances, mesuré dans Pression peut, doit être négatif.
Quelle unité est utilisée pour mesurer Pression osmotique compte tenu du volume et de la concentration de deux substances ?
Pression osmotique compte tenu du volume et de la concentration de deux substances est généralement mesuré à l'aide de Pascal[Pa] pour Pression. Kilopascal[Pa], Bar[Pa], Livre par pouce carré[Pa] sont les quelques autres unités dans lesquelles Pression osmotique compte tenu du volume et de la concentration de deux substances peut être mesuré.
Copied!