Fx Copie
LaTeX Copie
La longueur du bord du polygramme est la longueur de n'importe quel bord de la forme du polygramme, d'une extrémité à l'autre. Vérifiez FAQs
le=hSpike2+lBase24
le - Longueur d'arête du polygramme?hSpike - Hauteur de pointe du polygramme?lBase - Longueur de base du polygramme?

Exemple Longueur d'arête du polygramme compte tenu de la hauteur du pic

Avec des valeurs
Avec unités
Seul exemple

Voici à quoi ressemble l'équation Longueur d'arête du polygramme compte tenu de la hauteur du pic avec des valeurs.

Voici à quoi ressemble l'équation Longueur d'arête du polygramme compte tenu de la hauteur du pic avec unités.

Voici à quoi ressemble l'équation Longueur d'arête du polygramme compte tenu de la hauteur du pic.

5Edit=4Edit2+6Edit24
Tu es là -
HomeIcon Maison » Category Math » Category Géométrie » Category Géométrie 2D » fx Longueur d'arête du polygramme compte tenu de la hauteur du pic

Longueur d'arête du polygramme compte tenu de la hauteur du pic Solution

Suivez notre solution étape par étape pour savoir comment calculer Longueur d'arête du polygramme compte tenu de la hauteur du pic ?

Premier pas Considérez la formule
le=hSpike2+lBase24
L'étape suivante Valeurs de remplacement des variables
le=4m2+6m24
L'étape suivante Préparez-vous à évaluer
le=42+624
Dernière étape Évaluer
le=5m

Longueur d'arête du polygramme compte tenu de la hauteur du pic Formule Éléments

Variables
Les fonctions
Longueur d'arête du polygramme
La longueur du bord du polygramme est la longueur de n'importe quel bord de la forme du polygramme, d'une extrémité à l'autre.
Symbole: le
La mesure: LongueurUnité: m
Note: La valeur doit être supérieure à 0.
Hauteur de pointe du polygramme
La hauteur de pointe du polygramme est la hauteur des triangles isocèles par rapport au côté inégal, qui sont attachés au polygone du polygramme en tant que pointes.
Symbole: hSpike
La mesure: LongueurUnité: m
Note: La valeur doit être supérieure à 0.
Longueur de base du polygramme
La longueur de base du polygramme est la longueur du côté inégal du triangle isocèle qui forme les pointes du polygramme ou la longueur du côté du polygone du polygramme.
Symbole: lBase
La mesure: LongueurUnité: m
Note: La valeur doit être supérieure à 0.
sqrt
Une fonction racine carrée est une fonction qui prend un nombre non négatif comme entrée et renvoie la racine carrée du nombre d'entrée donné.
Syntaxe: sqrt(Number)

Autres formules pour trouver Longueur d'arête du polygramme

​va Longueur d'arête du polygramme donnée Longueur de base
le=lBase2(1-cos(Inner))
​va Longueur d'arête du polygramme donné Périmètre
le=P2NSpikes
​va Longueur d'arête du polygramme compte tenu de la longueur de la corde
le=lc2(1-cos(Outer))

Comment évaluer Longueur d'arête du polygramme compte tenu de la hauteur du pic ?

L'évaluateur Longueur d'arête du polygramme compte tenu de la hauteur du pic utilise Edge Length of Polygram = sqrt(Hauteur de pointe du polygramme^2+Longueur de base du polygramme^2/4) pour évaluer Longueur d'arête du polygramme, La formule Longueur d'arête du polygramme compte tenu de la hauteur de pointe est définie comme la longueur du côté (la longueur des côtés égaux) du triangle isocèle attaché au polygone à n côtés du polygramme et calculée à l'aide de sa hauteur de pointe. Longueur d'arête du polygramme est désigné par le symbole le.

Comment évaluer Longueur d'arête du polygramme compte tenu de la hauteur du pic à l'aide de cet évaluateur en ligne ? Pour utiliser cet évaluateur en ligne pour Longueur d'arête du polygramme compte tenu de la hauteur du pic, saisissez Hauteur de pointe du polygramme (hSpike) & Longueur de base du polygramme (lBase) et appuyez sur le bouton Calculer.

FAQs sur Longueur d'arête du polygramme compte tenu de la hauteur du pic

Quelle est la formule pour trouver Longueur d'arête du polygramme compte tenu de la hauteur du pic ?
La formule de Longueur d'arête du polygramme compte tenu de la hauteur du pic est exprimée sous la forme Edge Length of Polygram = sqrt(Hauteur de pointe du polygramme^2+Longueur de base du polygramme^2/4). Voici un exemple : 5 = sqrt(4^2+6^2/4).
Comment calculer Longueur d'arête du polygramme compte tenu de la hauteur du pic ?
Avec Hauteur de pointe du polygramme (hSpike) & Longueur de base du polygramme (lBase), nous pouvons trouver Longueur d'arête du polygramme compte tenu de la hauteur du pic en utilisant la formule - Edge Length of Polygram = sqrt(Hauteur de pointe du polygramme^2+Longueur de base du polygramme^2/4). Cette formule utilise également la ou les fonctions Racine carrée (sqrt).
Quelles sont les autres façons de calculer Longueur d'arête du polygramme ?
Voici les différentes façons de calculer Longueur d'arête du polygramme-
  • Edge Length of Polygram=Base Length of Polygram/sqrt(2*(1-cos(Inner Angle of Polygram)))OpenImg
  • Edge Length of Polygram=Perimeter of Polygram/(2*Number of Spikes in Polygram)OpenImg
  • Edge Length of Polygram=Chord Length of Polygram/sqrt(2*(1-cos(Outer Angle of Polygram)))OpenImg
Le Longueur d'arête du polygramme compte tenu de la hauteur du pic peut-il être négatif ?
Non, le Longueur d'arête du polygramme compte tenu de la hauteur du pic, mesuré dans Longueur ne peut pas, doit être négatif.
Quelle unité est utilisée pour mesurer Longueur d'arête du polygramme compte tenu de la hauteur du pic ?
Longueur d'arête du polygramme compte tenu de la hauteur du pic est généralement mesuré à l'aide de Mètre[m] pour Longueur. Millimètre[m], Kilomètre[m], Décimètre[m] sont les quelques autres unités dans lesquelles Longueur d'arête du polygramme compte tenu de la hauteur du pic peut être mesuré.
Copied!