Formule Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur

Fx Copie
LaTeX Copie
La hauteur du récipient est définie comme la hauteur du récipient cylindrique dans lequel le liquide est conservé. Vérifiez FAQs
H=ho+(ω2R24[g])
H - Hauteur du conteneur?ho - Hauteur de la surface libre du liquide sans rotation?ω - Vitesse angulaire?R - Rayon du conteneur cylindrique?[g] - Accélération gravitationnelle sur Terre?

Exemple Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur

Avec des valeurs
Avec unités
Seul exemple

Voici à quoi ressemble l'équation Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur avec des valeurs.

Voici à quoi ressemble l'équation Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur avec unités.

Voici à quoi ressemble l'équation Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur.

2.319Edit=2.24Edit+(2.2Edit20.8Edit249.8066)
Tu es là -
HomeIcon Maison » Category Ingénierie » Category Ingénieur chimiste » Category Dynamique des fluides » fx Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur

Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur Solution

Suivez notre solution étape par étape pour savoir comment calculer Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur ?

Premier pas Considérez la formule
H=ho+(ω2R24[g])
L'étape suivante Valeurs de remplacement des variables
H=2.24m+(2.2rad/s20.8m24[g])
L'étape suivante Valeurs de remplacement des constantes
H=2.24m+(2.2rad/s20.8m249.8066m/s²)
L'étape suivante Préparez-vous à évaluer
H=2.24+(2.220.8249.8066)
L'étape suivante Évaluer
H=2.31896682353301m
Dernière étape Réponse arrondie
H=2.319m

Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur Formule Éléments

Variables
Constantes
Hauteur du conteneur
La hauteur du récipient est définie comme la hauteur du récipient cylindrique dans lequel le liquide est conservé.
Symbole: H
La mesure: LongueurUnité: m
Note: La valeur peut être positive ou négative.
Hauteur de la surface libre du liquide sans rotation
La hauteur de la surface libre du liquide sans rotation est définie comme la hauteur normale du liquide lorsque le récipient ne tourne pas autour de son axe.
Symbole: ho
La mesure: LongueurUnité: m
Note: La valeur peut être positive ou négative.
Vitesse angulaire
La vitesse angulaire fait référence à la vitesse à laquelle un objet tourne ou tourne par rapport à un autre point, c'est-à-dire à quelle vitesse la position angulaire ou l'orientation d'un objet change avec le temps.
Symbole: ω
La mesure: Vitesse angulaireUnité: rad/s
Note: La valeur peut être positive ou négative.
Rayon du conteneur cylindrique
Le rayon du récipient cylindrique est défini comme le rayon du récipient dans lequel le liquide est conservé et montrera un mouvement de rotation.
Symbole: R
La mesure: LongueurUnité: m
Note: La valeur peut être positive ou négative.
Accélération gravitationnelle sur Terre
L'accélération gravitationnelle sur Terre signifie que la vitesse d'un objet en chute libre augmentera de 9,8 m/s2 chaque seconde.
Symbole: [g]
Valeur: 9.80665 m/s²

Autres formules dans la catégorie Fluides dans le mouvement du corps rigide

​va Pression au point dans le mouvement du corps rigide du liquide dans le réservoir à accélération linéaire
Pf=Pinitial-(ρFluidaxx)-(ρFluid([g]+az)z)
​va Isobares à surface libre dans un fluide incompressible avec une accélération constante
zisobar=-(ax[g]+az)x
​va Élévation verticale de la surface libre
ΔZs=ZS2-ZS1
​va Montée ou descente verticale de la surface libre en fonction de l'accélération dans les directions X et Z
ΔZs=-(ax[g]+az)(x2-x1)

Comment évaluer Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur ?

L'évaluateur Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur utilise Height of Container = Hauteur de la surface libre du liquide sans rotation+((Vitesse angulaire^2*Rayon du conteneur cylindrique^2)/(4*[g])) pour évaluer Hauteur du conteneur, La hauteur du conteneur étant donné le rayon et la formule de la vitesse angulaire du conteneur est définie comme la fonction de la hauteur de la surface libre du liquide, du rayon du conteneur, de la vitesse angulaire du conteneur et de l'accélération gravitationnelle. Lors d'un mouvement de corps rigide d'un liquide dans un cylindre en rotation, les surfaces de pression constante sont des paraboloïdes de révolution. La pression est une propriété fondamentale, et il est difficile d'imaginer un problème d'écoulement de fluide important qui n'implique pas de pression. Hauteur du conteneur est désigné par le symbole H.

Comment évaluer Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur à l'aide de cet évaluateur en ligne ? Pour utiliser cet évaluateur en ligne pour Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur, saisissez Hauteur de la surface libre du liquide sans rotation (ho), Vitesse angulaire (ω) & Rayon du conteneur cylindrique (R) et appuyez sur le bouton Calculer.

FAQs sur Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur

Quelle est la formule pour trouver Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur ?
La formule de Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur est exprimée sous la forme Height of Container = Hauteur de la surface libre du liquide sans rotation+((Vitesse angulaire^2*Rayon du conteneur cylindrique^2)/(4*[g])). Voici un exemple : 2.318967 = 2.24+((2.2^2*0.8^2)/(4*[g])).
Comment calculer Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur ?
Avec Hauteur de la surface libre du liquide sans rotation (ho), Vitesse angulaire (ω) & Rayon du conteneur cylindrique (R), nous pouvons trouver Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur en utilisant la formule - Height of Container = Hauteur de la surface libre du liquide sans rotation+((Vitesse angulaire^2*Rayon du conteneur cylindrique^2)/(4*[g])). Cette formule utilise également Accélération gravitationnelle sur Terre constante(s).
Le Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur peut-il être négatif ?
Oui, le Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur, mesuré dans Longueur peut, doit être négatif.
Quelle unité est utilisée pour mesurer Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur ?
Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur est généralement mesuré à l'aide de Mètre[m] pour Longueur. Millimètre[m], Kilomètre[m], Décimètre[m] sont les quelques autres unités dans lesquelles Hauteur du conteneur compte tenu du rayon et de la vitesse angulaire du conteneur peut être mesuré.
Copied!