Fx Copie
LaTeX Copie
La hauteur de Nonagon est la longueur d'une ligne perpendiculaire tracée d'un sommet au côté opposé. Vérifiez FAQs
h=d3sin(π9)2sin(3π9)tan(π18)
h - Hauteur de Nonagon?d3 - Diagonale sur les trois côtés de Nonagon?π - Constante d'Archimède?

Exemple Hauteur de Nonagon donnée en diagonale sur trois côtés

Avec des valeurs
Avec unités
Seul exemple

Voici à quoi ressemble l'équation Hauteur de Nonagon donnée en diagonale sur trois côtés avec des valeurs.

Voici à quoi ressemble l'équation Hauteur de Nonagon donnée en diagonale sur trois côtés avec unités.

Voici à quoi ressemble l'équation Hauteur de Nonagon donnée en diagonale sur trois côtés.

22.3976Edit=20Editsin(3.14169)2sin(33.14169)tan(3.141618)
Tu es là -
HomeIcon Maison » Category Math » Category Géométrie » Category Géométrie 2D » fx Hauteur de Nonagon donnée en diagonale sur trois côtés

Hauteur de Nonagon donnée en diagonale sur trois côtés Solution

Suivez notre solution étape par étape pour savoir comment calculer Hauteur de Nonagon donnée en diagonale sur trois côtés ?

Premier pas Considérez la formule
h=d3sin(π9)2sin(3π9)tan(π18)
L'étape suivante Valeurs de remplacement des variables
h=20msin(π9)2sin(3π9)tan(π18)
L'étape suivante Valeurs de remplacement des constantes
h=20msin(3.14169)2sin(33.14169)tan(3.141618)
L'étape suivante Préparez-vous à évaluer
h=20sin(3.14169)2sin(33.14169)tan(3.141618)
L'étape suivante Évaluer
h=22.3976411351175m
Dernière étape Réponse arrondie
h=22.3976m

Hauteur de Nonagon donnée en diagonale sur trois côtés Formule Éléments

Variables
Constantes
Les fonctions
Hauteur de Nonagon
La hauteur de Nonagon est la longueur d'une ligne perpendiculaire tracée d'un sommet au côté opposé.
Symbole: h
La mesure: LongueurUnité: m
Note: La valeur doit être supérieure à 0.
Diagonale sur les trois côtés de Nonagon
La diagonale à travers les trois côtés du Nonagon est la ligne droite joignant deux sommets non adjacents qui traversent trois côtés du Nonagon.
Symbole: d3
La mesure: LongueurUnité: m
Note: La valeur doit être supérieure à 0.
Constante d'Archimède
La constante d'Archimède est une constante mathématique qui représente le rapport entre la circonférence d'un cercle et son diamètre.
Symbole: π
Valeur: 3.14159265358979323846264338327950288
sin
Le sinus est une fonction trigonométrique qui décrit le rapport entre la longueur du côté opposé d'un triangle rectangle et la longueur de l'hypoténuse.
Syntaxe: sin(Angle)
tan
La tangente d'un angle est un rapport trigonométrique de la longueur du côté opposé à un angle à la longueur du côté adjacent à un angle dans un triangle rectangle.
Syntaxe: tan(Angle)

Autres formules pour trouver Hauteur de Nonagon

​va Hauteur de Nonagon
h=rc+ri
​va Hauteur de Nonagon donnée
h=(1+cos(π9)3sin(π9))A(tan(π9))
​va Hauteur de Nonagon étant donné Inradius
h=ri(1+sec(π9))
​va Hauteur du côté Nonagon donné
h=(1+cos(π9)2sin(π9))S

Comment évaluer Hauteur de Nonagon donnée en diagonale sur trois côtés ?

L'évaluateur Hauteur de Nonagon donnée en diagonale sur trois côtés utilise Height of Nonagon = Diagonale sur les trois côtés de Nonagon*sin(pi/9)/(2*sin(3*pi/9)*tan(pi/18)) pour évaluer Hauteur de Nonagon, La hauteur du Nonagon étant donné la formule diagonale sur trois côtés est définie comme la distance perpendiculaire entre le sommet du Nonagon et un point sur son côté opposé en utilisant la diagonale sur trois côtés. Hauteur de Nonagon est désigné par le symbole h.

Comment évaluer Hauteur de Nonagon donnée en diagonale sur trois côtés à l'aide de cet évaluateur en ligne ? Pour utiliser cet évaluateur en ligne pour Hauteur de Nonagon donnée en diagonale sur trois côtés, saisissez Diagonale sur les trois côtés de Nonagon (d3) et appuyez sur le bouton Calculer.

FAQs sur Hauteur de Nonagon donnée en diagonale sur trois côtés

Quelle est la formule pour trouver Hauteur de Nonagon donnée en diagonale sur trois côtés ?
La formule de Hauteur de Nonagon donnée en diagonale sur trois côtés est exprimée sous la forme Height of Nonagon = Diagonale sur les trois côtés de Nonagon*sin(pi/9)/(2*sin(3*pi/9)*tan(pi/18)). Voici un exemple : 22.39764 = 20*sin(pi/9)/(2*sin(3*pi/9)*tan(pi/18)).
Comment calculer Hauteur de Nonagon donnée en diagonale sur trois côtés ?
Avec Diagonale sur les trois côtés de Nonagon (d3), nous pouvons trouver Hauteur de Nonagon donnée en diagonale sur trois côtés en utilisant la formule - Height of Nonagon = Diagonale sur les trois côtés de Nonagon*sin(pi/9)/(2*sin(3*pi/9)*tan(pi/18)). Cette formule utilise également les fonctions Constante d'Archimède et , Sinus (péché), Tangente (tan).
Quelles sont les autres façons de calculer Hauteur de Nonagon ?
Voici les différentes façons de calculer Hauteur de Nonagon-
  • Height of Nonagon=Circumradius of Nonagon+Inradius of NonagonOpenImg
  • Height of Nonagon=((1+cos(pi/9))/(3*sin(pi/9)))*sqrt(Area of Nonagon*(tan(pi/9)))OpenImg
  • Height of Nonagon=Inradius of Nonagon*(1+sec(pi/9))OpenImg
Le Hauteur de Nonagon donnée en diagonale sur trois côtés peut-il être négatif ?
Non, le Hauteur de Nonagon donnée en diagonale sur trois côtés, mesuré dans Longueur ne peut pas, doit être négatif.
Quelle unité est utilisée pour mesurer Hauteur de Nonagon donnée en diagonale sur trois côtés ?
Hauteur de Nonagon donnée en diagonale sur trois côtés est généralement mesuré à l'aide de Mètre[m] pour Longueur. Millimètre[m], Kilomètre[m], Décimètre[m] sont les quelques autres unités dans lesquelles Hauteur de Nonagon donnée en diagonale sur trois côtés peut être mesuré.
Copied!