Fx Copie
LaTeX Copie
La contrainte maximale pour la section est la contrainte la plus élevée autorisée sans aucune défaillance. Vérifiez FAQs
SM=(23)Phk
SM - Contrainte maximale pour la section?P - Charge concentrée?h - Hauteur de la section transversale?k - Distance du bord le plus proche?

Exemple Contrainte maximale pour un poteau à section rectangulaire sous compression

Avec des valeurs
Avec unités
Seul exemple

Voici à quoi ressemble l'équation Contrainte maximale pour un poteau à section rectangulaire sous compression avec des valeurs.

Voici à quoi ressemble l'équation Contrainte maximale pour un poteau à section rectangulaire sous compression avec unités.

Voici à quoi ressemble l'équation Contrainte maximale pour un poteau à section rectangulaire sous compression.

46.2963Edit=(23)150Edit9000Edit240Edit
Tu es là -

Contrainte maximale pour un poteau à section rectangulaire sous compression Solution

Suivez notre solution étape par étape pour savoir comment calculer Contrainte maximale pour un poteau à section rectangulaire sous compression ?

Premier pas Considérez la formule
SM=(23)Phk
L'étape suivante Valeurs de remplacement des variables
SM=(23)150N9000mm240mm
L'étape suivante Convertir des unités
SM=(23)150N9m0.24m
L'étape suivante Préparez-vous à évaluer
SM=(23)15090.24
L'étape suivante Évaluer
SM=46.2962962962963Pa
Dernière étape Réponse arrondie
SM=46.2963Pa

Contrainte maximale pour un poteau à section rectangulaire sous compression Formule Éléments

Variables
Contrainte maximale pour la section
La contrainte maximale pour la section est la contrainte la plus élevée autorisée sans aucune défaillance.
Symbole: SM
La mesure: StresserUnité: Pa
Note: La valeur doit être supérieure à 0.
Charge concentrée
Une charge concentrée est une charge agissant en un seul point.
Symbole: P
La mesure: ForceUnité: N
Note: La valeur doit être supérieure à 0.
Hauteur de la section transversale
La hauteur de la section transversale est la distance verticale entre le bas et le haut de la section 2D.
Symbole: h
La mesure: LongueurUnité: mm
Note: La valeur doit être supérieure à 0.
Distance du bord le plus proche
La distance depuis le bord le plus proche est la distance entre le bord le plus proche des sections et une charge ponctuelle agissant sur la même section.
Symbole: k
La mesure: LongueurUnité: mm
Note: La valeur doit être supérieure à 0.

Autres formules pour trouver Contrainte maximale pour la section

​va Contrainte maximale pour un poteau à section rectangulaire
SM=Sc(1+6eb)
​va Contrainte maximale pour les poteaux à section circulaire
SM=Sc(1+8ed)
​va Contrainte maximale pour un poteau à section circulaire sous compression
SM=(0.372+0.056(kr)(Pk)rk)

Autres formules dans la catégorie Charges excentriques sur les colonnes

​va Rayon de Kern pour l'anneau circulaire
rkern=D(1+(diD)2)8
​va Rayon de Kern pour le carré creux
rkern=0.1179H(1+(hiH)2)
​va Épaisseur du mur pour l'octogone creux
t=0.9239(Ra-Ri)

Comment évaluer Contrainte maximale pour un poteau à section rectangulaire sous compression ?

L'évaluateur Contrainte maximale pour un poteau à section rectangulaire sous compression utilise Maximum Stress for Section = (2/3)*Charge concentrée/(Hauteur de la section transversale*Distance du bord le plus proche) pour évaluer Contrainte maximale pour la section, La formule de contrainte maximale pour le poteau de section rectangulaire sous compression est définie comme la dimension de la section rectangulaire sous chargement de compression. Contrainte maximale pour la section est désigné par le symbole SM.

Comment évaluer Contrainte maximale pour un poteau à section rectangulaire sous compression à l'aide de cet évaluateur en ligne ? Pour utiliser cet évaluateur en ligne pour Contrainte maximale pour un poteau à section rectangulaire sous compression, saisissez Charge concentrée (P), Hauteur de la section transversale (h) & Distance du bord le plus proche (k) et appuyez sur le bouton Calculer.

FAQs sur Contrainte maximale pour un poteau à section rectangulaire sous compression

Quelle est la formule pour trouver Contrainte maximale pour un poteau à section rectangulaire sous compression ?
La formule de Contrainte maximale pour un poteau à section rectangulaire sous compression est exprimée sous la forme Maximum Stress for Section = (2/3)*Charge concentrée/(Hauteur de la section transversale*Distance du bord le plus proche). Voici un exemple : 46.2963 = (2/3)*150/(9*0.24).
Comment calculer Contrainte maximale pour un poteau à section rectangulaire sous compression ?
Avec Charge concentrée (P), Hauteur de la section transversale (h) & Distance du bord le plus proche (k), nous pouvons trouver Contrainte maximale pour un poteau à section rectangulaire sous compression en utilisant la formule - Maximum Stress for Section = (2/3)*Charge concentrée/(Hauteur de la section transversale*Distance du bord le plus proche).
Quelles sont les autres façons de calculer Contrainte maximale pour la section ?
Voici les différentes façons de calculer Contrainte maximale pour la section-
  • Maximum Stress for Section=Unit Stress*(1+6*Eccentricity of Column/Rectangular Cross-Section Width)OpenImg
  • Maximum Stress for Section=Unit Stress*(1+8*Eccentricity of Column/Diameter of Circular Cross-Section)OpenImg
  • Maximum Stress for Section=(0.372+0.056*(Distance from Nearest Edge/Radius of Circular Cross-Section)*(Concentrated Load/Distance from Nearest Edge)*sqrt(Radius of Circular Cross-Section*Distance from Nearest Edge))OpenImg
Le Contrainte maximale pour un poteau à section rectangulaire sous compression peut-il être négatif ?
Non, le Contrainte maximale pour un poteau à section rectangulaire sous compression, mesuré dans Stresser ne peut pas, doit être négatif.
Quelle unité est utilisée pour mesurer Contrainte maximale pour un poteau à section rectangulaire sous compression ?
Contrainte maximale pour un poteau à section rectangulaire sous compression est généralement mesuré à l'aide de Pascal[Pa] pour Stresser. Newton par mètre carré[Pa], Newton par millimètre carré[Pa], Kilonewton par mètre carré[Pa] sont les quelques autres unités dans lesquelles Contrainte maximale pour un poteau à section rectangulaire sous compression peut être mesuré.
Copied!