Tercera ley de Kepler Fórmula

Fx Copiar
LaTeX Copiar
El semieje mayor se puede utilizar para determinar el tamaño de la órbita del satélite. Es la mitad del eje mayor. Marque FAQs
asemi=([GM.Earth]n2)13
asemi - Semieje mayor?n - Movimiento medio?[GM.Earth] - La constante gravitacional geocéntrica de la Tierra?

Ejemplo de Tercera ley de Kepler

Con valores
Con unidades
Solo ejemplo

Así es como se ve la ecuación Tercera ley de Kepler con Valores.

Así es como se ve la ecuación Tercera ley de Kepler con unidades.

Así es como se ve la ecuación Tercera ley de Kepler.

581706.9457Edit=(4E+140.045Edit2)13
Copiar
Reiniciar
Compartir
Usted está aquí -
HomeIcon Hogar » Category Ingenieria » Category Electrónica » Category Comunicación por satélite » fx Tercera ley de Kepler

Tercera ley de Kepler Solución

¿Sigue nuestra solución paso a paso sobre cómo calcular Tercera ley de Kepler?

Primer paso Considere la fórmula
asemi=([GM.Earth]n2)13
Próximo paso Valores sustitutos de variables
asemi=([GM.Earth]0.045rad/s2)13
Próximo paso Valores sustitutos de constantes
asemi=(4E+14m³/s²0.045rad/s2)13
Próximo paso Prepárese para evaluar
asemi=(4E+140.0452)13
Próximo paso Evaluar
asemi=581706945.697113m
Próximo paso Convertir a unidad de salida
asemi=581706.945697113km
Último paso Respuesta de redondeo
asemi=581706.9457km

Tercera ley de Kepler Fórmula Elementos

variables
Constantes
Semieje mayor
El semieje mayor se puede utilizar para determinar el tamaño de la órbita del satélite. Es la mitad del eje mayor.
Símbolo: asemi
Medición: LongitudUnidad: km
Nota: El valor debe ser mayor que 0.
Movimiento medio
El movimiento medio es la velocidad angular requerida para que un cuerpo complete una órbita, asumiendo una velocidad constante en la órbita circular que toma el mismo tiempo que la órbita elíptica de velocidad variable del cuerpo real.
Símbolo: n
Medición: Velocidad angularUnidad: rad/s
Nota: El valor debe ser mayor que 0.
La constante gravitacional geocéntrica de la Tierra
La constante gravitacional geocéntrica de la Tierra es el parámetro gravitacional de la Tierra como cuerpo central.
Símbolo: [GM.Earth]
Valor: 3.986004418E+14 m³/s²

Otras fórmulas en la categoría Características orbitales de los satélites

​Ir Período anómalo
TAP=2πn
​Ir Hora sidérea local
LST=GST+Elong
​Ir Anomalía media
M=E-esin(E)
​Ir Movimiento medio del satélite
n=[GM.Earth]asemi3

¿Cómo evaluar Tercera ley de Kepler?

El evaluador de Tercera ley de Kepler usa Semi Major Axis = ([GM.Earth]/Movimiento medio^2)^(1/3) para evaluar Semieje mayor, La fórmula de la Tercera Ley de Kepler se define como los cuadrados de los períodos orbitales de los planetas son directamente proporcionales a los cubos de los ejes semi-mayores de sus órbitas. La Tercera Ley de Kepler implica que el período para que un planeta orbite alrededor del Sol aumenta rápidamente con el radio de su órbita. Semieje mayor se indica mediante el símbolo asemi.

¿Cómo evaluar Tercera ley de Kepler usando este evaluador en línea? Para utilizar este evaluador en línea para Tercera ley de Kepler, ingrese Movimiento medio (n) y presione el botón calcular.

FAQs en Tercera ley de Kepler

¿Cuál es la fórmula para encontrar Tercera ley de Kepler?
La fórmula de Tercera ley de Kepler se expresa como Semi Major Axis = ([GM.Earth]/Movimiento medio^2)^(1/3). Aquí hay un ejemplo: 0.581707 = ([GM.Earth]/0.045^2)^(1/3).
¿Cómo calcular Tercera ley de Kepler?
Con Movimiento medio (n) podemos encontrar Tercera ley de Kepler usando la fórmula - Semi Major Axis = ([GM.Earth]/Movimiento medio^2)^(1/3). Esta fórmula también usa La constante gravitacional geocéntrica de la Tierra .
¿Puede el Tercera ley de Kepler ser negativo?
No, el Tercera ley de Kepler, medido en Longitud no puedo sea negativo.
¿Qué unidad se utiliza para medir Tercera ley de Kepler?
Tercera ley de Kepler generalmente se mide usando Kilómetro[km] para Longitud. Metro[km], Milímetro[km], Decímetro[km] son las pocas otras unidades en las que se puede medir Tercera ley de Kepler.
Copied!