Suma de cuadrados de primeros N números naturales impares Fórmula

Fx Copiar
LaTeX Copiar
La suma de los cuadrados de los primeros N números naturales impares es la suma de los cuadrados de los números naturales impares desde 1 hasta el enésimo número impar 2n-1. Marque FAQs
Sn2(Odd)=n((2n)+1)((2n)-1)3
Sn2(Odd) - Suma de cuadrados de primeros N números naturales impares?n - Valor de N?

Ejemplo de Suma de cuadrados de primeros N números naturales impares

Con valores
Con unidades
Solo ejemplo

Así es como se ve la ecuación Suma de cuadrados de primeros N números naturales impares con Valores.

Así es como se ve la ecuación Suma de cuadrados de primeros N números naturales impares con unidades.

Así es como se ve la ecuación Suma de cuadrados de primeros N números naturales impares.

35Edit=3Edit((23Edit)+1)((23Edit)-1)3
Copiar
Reiniciar
Compartir
Usted está aquí -
HomeIcon Hogar » Category Mates » Category Secuencia y serie » Category Serie general » fx Suma de cuadrados de primeros N números naturales impares

Suma de cuadrados de primeros N números naturales impares Solución

¿Sigue nuestra solución paso a paso sobre cómo calcular Suma de cuadrados de primeros N números naturales impares?

Primer paso Considere la fórmula
Sn2(Odd)=n((2n)+1)((2n)-1)3
Próximo paso Valores sustitutos de variables
Sn2(Odd)=3((23)+1)((23)-1)3
Próximo paso Prepárese para evaluar
Sn2(Odd)=3((23)+1)((23)-1)3
Último paso Evaluar
Sn2(Odd)=35

Suma de cuadrados de primeros N números naturales impares Fórmula Elementos

variables
Suma de cuadrados de primeros N números naturales impares
La suma de los cuadrados de los primeros N números naturales impares es la suma de los cuadrados de los números naturales impares desde 1 hasta el enésimo número impar 2n-1.
Símbolo: Sn2(Odd)
Medición: NAUnidad: Unitless
Nota: El valor debe ser mayor que 0.
Valor de N
El valor de N es el número total de términos desde el comienzo de la serie hasta donde se calcula la suma de la serie.
Símbolo: n
Medición: NAUnidad: Unitless
Nota: El valor debe ser mayor que 0.

Otras fórmulas en la categoría Suma de cuadrados

​Ir Suma de cuadrados de los primeros N números naturales
Sn2=n(n+1)((2n)+1)6
​Ir Suma de cuadrados de primeros N números naturales pares
Sn2(Even)=2n(n+1)((2n)+1)3

¿Cómo evaluar Suma de cuadrados de primeros N números naturales impares?

El evaluador de Suma de cuadrados de primeros N números naturales impares usa Sum of Squares of First N Odd Natural Numbers = (Valor de N*((2*Valor de N)+1)*((2*Valor de N)-1))/3 para evaluar Suma de cuadrados de primeros N números naturales impares, La fórmula Suma de los cuadrados de los primeros N números naturales impares se define como la suma de los cuadrados de los números naturales impares desde 1 hasta el enésimo número impar 2n-1. Suma de cuadrados de primeros N números naturales impares se indica mediante el símbolo Sn2(Odd).

¿Cómo evaluar Suma de cuadrados de primeros N números naturales impares usando este evaluador en línea? Para utilizar este evaluador en línea para Suma de cuadrados de primeros N números naturales impares, ingrese Valor de N (n) y presione el botón calcular.

FAQs en Suma de cuadrados de primeros N números naturales impares

¿Cuál es la fórmula para encontrar Suma de cuadrados de primeros N números naturales impares?
La fórmula de Suma de cuadrados de primeros N números naturales impares se expresa como Sum of Squares of First N Odd Natural Numbers = (Valor de N*((2*Valor de N)+1)*((2*Valor de N)-1))/3. Aquí hay un ejemplo: 35 = (3*((2*3)+1)*((2*3)-1))/3.
¿Cómo calcular Suma de cuadrados de primeros N números naturales impares?
Con Valor de N (n) podemos encontrar Suma de cuadrados de primeros N números naturales impares usando la fórmula - Sum of Squares of First N Odd Natural Numbers = (Valor de N*((2*Valor de N)+1)*((2*Valor de N)-1))/3.
Copied!