Fx Copiar
LaTeX Copiar
Semi Latus Rectum de Hipérbola es la mitad del segmento de línea que pasa por cualquiera de los focos y es perpendicular al eje transversal cuyos extremos están en la Hipérbola. Marque FAQs
LSemi=a(e2-1)
LSemi - Semi Latus Recto de Hipérbola?a - Eje semitransversal de la hipérbola?e - Excentricidad de Hipérbola?

Ejemplo de Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal

Con valores
Con unidades
Solo ejemplo

Así es como se ve la ecuación Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal con Valores.

Así es como se ve la ecuación Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal con unidades.

Así es como se ve la ecuación Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal.

40Edit=5Edit(3Edit2-1)
Copiar
Reiniciar
Compartir
Usted está aquí -

Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal Solución

¿Sigue nuestra solución paso a paso sobre cómo calcular Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal?

Primer paso Considere la fórmula
LSemi=a(e2-1)
Próximo paso Valores sustitutos de variables
LSemi=5m(3m2-1)
Próximo paso Prepárese para evaluar
LSemi=5(32-1)
Último paso Evaluar
LSemi=40m

Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal Fórmula Elementos

variables
Semi Latus Recto de Hipérbola
Semi Latus Rectum de Hipérbola es la mitad del segmento de línea que pasa por cualquiera de los focos y es perpendicular al eje transversal cuyos extremos están en la Hipérbola.
Símbolo: LSemi
Medición: LongitudUnidad: m
Nota: El valor debe ser mayor que 0.
Eje semitransversal de la hipérbola
El eje semitransversal de la hipérbola es la mitad de la distancia entre los vértices de la hipérbola.
Símbolo: a
Medición: LongitudUnidad: m
Nota: El valor debe ser mayor que 0.
Excentricidad de Hipérbola
La excentricidad de la hipérbola es la relación entre las distancias de cualquier punto de la hipérbola desde el foco y la directriz, o es la relación entre la excentricidad lineal y el eje semitransversal de la hipérbola.
Símbolo: e
Medición: LongitudUnidad: m
Nota: El valor debe ser mayor que 1.

Otras fórmulas para encontrar Semi Latus Recto de Hipérbola

​Ir Semi Latus Recto de Hipérbola
LSemi=b2a
​Ir Semi Latus Rectum de Hipérbola dada Excentricidad Lineal y Eje Semi Conjugado
LSemi=(2b2)2c2-b22
​Ir Semi Latus Rectum de Hipérbola dada Excentricidad Lineal y Eje Semi Transversal
LSemi=a((ca)2-1)
​Ir Recto Semi Latus de Hipérbola dada Excentricidad y Eje Semi Conjugado
LSemi=(2b)2(e2-1)2

Otras fórmulas en la categoría Latus Rectum de Hipérbola

​Ir Latus Rectum de Hipérbola
L=2b2a
​Ir Latus Rectum de Hipérbola dada Excentricidad y Eje Semi Conjugado
L=(2b)2(e2-1)
​Ir Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal
L=2a(e2-1)
​Ir Latus Rectum de Hyperbola dada la excentricidad lineal y el eje semitransversal
L=2a((ca)2-1)

¿Cómo evaluar Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal?

El evaluador de Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal usa Semi Latus Rectum of Hyperbola = Eje semitransversal de la hipérbola*(Excentricidad de Hipérbola^2-1) para evaluar Semi Latus Recto de Hipérbola, La fórmula Semi Latus Rectum of Hyperbola dada la excentricidad y el semieje transversal se define como la mitad del segmento de línea que pasa por cualquiera de los focos y es perpendicular al eje transversal cuyos extremos están en la hipérbola y se calcula utilizando la excentricidad y el eje semitransversal. de la hipérbola. Semi Latus Recto de Hipérbola se indica mediante el símbolo LSemi.

¿Cómo evaluar Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal usando este evaluador en línea? Para utilizar este evaluador en línea para Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal, ingrese Eje semitransversal de la hipérbola (a) & Excentricidad de Hipérbola (e) y presione el botón calcular.

FAQs en Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal

¿Cuál es la fórmula para encontrar Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal?
La fórmula de Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal se expresa como Semi Latus Rectum of Hyperbola = Eje semitransversal de la hipérbola*(Excentricidad de Hipérbola^2-1). Aquí hay un ejemplo: 40 = 5*(3^2-1).
¿Cómo calcular Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal?
Con Eje semitransversal de la hipérbola (a) & Excentricidad de Hipérbola (e) podemos encontrar Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal usando la fórmula - Semi Latus Rectum of Hyperbola = Eje semitransversal de la hipérbola*(Excentricidad de Hipérbola^2-1).
¿Cuáles son las otras formas de calcular Semi Latus Recto de Hipérbola?
Estas son las diferentes formas de calcular Semi Latus Recto de Hipérbola-
  • Semi Latus Rectum of Hyperbola=Semi Conjugate Axis of Hyperbola^2/Semi Transverse Axis of HyperbolaOpenImg
  • Semi Latus Rectum of Hyperbola=sqrt((2*Semi Conjugate Axis of Hyperbola^2)^2/(Linear Eccentricity of Hyperbola^2-Semi Conjugate Axis of Hyperbola^2))/2OpenImg
  • Semi Latus Rectum of Hyperbola=Semi Transverse Axis of Hyperbola*((Linear Eccentricity of Hyperbola/Semi Transverse Axis of Hyperbola)^2-1)OpenImg
¿Puede el Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal ser negativo?
No, el Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal, medido en Longitud no puedo sea negativo.
¿Qué unidad se utiliza para medir Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal?
Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal generalmente se mide usando Metro[m] para Longitud. Milímetro[m], Kilómetro[m], Decímetro[m] son las pocas otras unidades en las que se puede medir Semi Latus Rectum de Hipérbola dada la excentricidad y el eje semitransversal.
Copied!