Fx Copiar
LaTeX Copiar
El exceso de energía libre de Gibbs es la energía de Gibbs de una solución en exceso de lo que sería si fuera ideal. Marque FAQs
GE=(x1x2[R]TNRTL)(((exp(-αb21[R]TNRTL))(b21[R]TNRTL)x1+x2exp(-αb21[R]TNRTL))+((exp(-αb12[R]TNRTL))(b12[R]TNRTL)x2+x1exp(-αb12[R]TNRTL)))
GE - Exceso de energía libre de Gibbs?x1 - Fracción molar del componente 1 en fase líquida?x2 - Fracción molar del componente 2 en fase líquida?TNRTL - Temperatura para modelo NRTL?α - Coeficiente de ecuación NRTL (α)?b21 - Coeficiente de ecuación NRTL (b21)?b12 - Coeficiente de ecuación NRTL (b12)?[R] - constante universal de gas?[R] - constante universal de gas?[R] - constante universal de gas?[R] - constante universal de gas?[R] - constante universal de gas?[R] - constante universal de gas?[R] - constante universal de gas?

Ejemplo de Exceso de energía libre de Gibbs utilizando la ecuación NRTL

Con valores
Con unidades
Solo ejemplo

Así es como se ve la ecuación Exceso de energía libre de Gibbs utilizando la ecuación NRTL con Valores.

Así es como se ve la ecuación Exceso de energía libre de Gibbs utilizando la ecuación NRTL con unidades.

Así es como se ve la ecuación Exceso de energía libre de Gibbs utilizando la ecuación NRTL.

0.0255Edit=(0.4Edit0.6Edit8.3145550Edit)(((exp(-0.15Edit0.12Edit8.3145550Edit))(0.12Edit8.3145550Edit)0.4Edit+0.6Editexp(-0.15Edit0.12Edit8.3145550Edit))+((exp(-0.15Edit0.19Edit8.3145550Edit))(0.19Edit8.3145550Edit)0.6Edit+0.4Editexp(-0.15Edit0.19Edit8.3145550Edit)))
Copiar
Reiniciar
Compartir
Usted está aquí -
HomeIcon Hogar » Category Ingenieria » Category Ingeniería Química » Category Termodinámica » fx Exceso de energía libre de Gibbs utilizando la ecuación NRTL

Exceso de energía libre de Gibbs utilizando la ecuación NRTL Solución

¿Sigue nuestra solución paso a paso sobre cómo calcular Exceso de energía libre de Gibbs utilizando la ecuación NRTL?

Primer paso Considere la fórmula
GE=(x1x2[R]TNRTL)(((exp(-αb21[R]TNRTL))(b21[R]TNRTL)x1+x2exp(-αb21[R]TNRTL))+((exp(-αb12[R]TNRTL))(b12[R]TNRTL)x2+x1exp(-αb12[R]TNRTL)))
Próximo paso Valores sustitutos de variables
GE=(0.40.6[R]550K)(((exp(-0.150.12J/mol[R]550K))(0.12J/mol[R]550K)0.4+0.6exp(-0.150.12J/mol[R]550K))+((exp(-0.150.19J/mol[R]550K))(0.19J/mol[R]550K)0.6+0.4exp(-0.150.19J/mol[R]550K)))
Próximo paso Valores sustitutos de constantes
GE=(0.40.68.3145550K)(((exp(-0.150.12J/mol8.3145550K))(0.12J/mol8.3145550K)0.4+0.6exp(-0.150.12J/mol8.3145550K))+((exp(-0.150.19J/mol8.3145550K))(0.19J/mol8.3145550K)0.6+0.4exp(-0.150.19J/mol8.3145550K)))
Próximo paso Prepárese para evaluar
GE=(0.40.68.3145550)(((exp(-0.150.128.3145550))(0.128.3145550)0.4+0.6exp(-0.150.128.3145550))+((exp(-0.150.198.3145550))(0.198.3145550)0.6+0.4exp(-0.150.198.3145550)))
Próximo paso Evaluar
GE=0.0255091211453841J
Último paso Respuesta de redondeo
GE=0.0255J

Exceso de energía libre de Gibbs utilizando la ecuación NRTL Fórmula Elementos

variables
Constantes
Funciones
Exceso de energía libre de Gibbs
El exceso de energía libre de Gibbs es la energía de Gibbs de una solución en exceso de lo que sería si fuera ideal.
Símbolo: GE
Medición: EnergíaUnidad: J
Nota: El valor puede ser positivo o negativo.
Fracción molar del componente 1 en fase líquida
La fracción molar del componente 1 en fase líquida se puede definir como la relación entre el número de moles de un componente 1 y el número total de moles de componentes presentes en la fase líquida.
Símbolo: x1
Medición: NAUnidad: Unitless
Nota: El valor debe estar entre 0 y 1.
Fracción molar del componente 2 en fase líquida
La fracción molar del componente 2 en fase líquida se puede definir como la relación entre el número de moles de un componente 2 y el número total de moles de componentes presentes en la fase líquida.
Símbolo: x2
Medición: NAUnidad: Unitless
Nota: El valor debe estar entre 0 y 1.
Temperatura para modelo NRTL
La temperatura para el modelo NRTL es el grado o la intensidad del calor presente en una sustancia u objeto.
Símbolo: TNRTL
Medición: La temperaturaUnidad: K
Nota: El valor puede ser positivo o negativo.
Coeficiente de ecuación NRTL (α)
El coeficiente de ecuación NRTL (α) es el coeficiente utilizado en la ecuación NRTL, que es un parámetro específico para un par de especies en particular.
Símbolo: α
Medición: NAUnidad: Unitless
Nota: El valor puede ser positivo o negativo.
Coeficiente de ecuación NRTL (b21)
El coeficiente de ecuación NRTL (b21) es el coeficiente utilizado en la ecuación NRTL para el componente 2 en el sistema binario. Es independiente de la concentración y la temperatura.
Símbolo: b21
Medición: Energía por molUnidad: J/mol
Nota: El valor puede ser positivo o negativo.
Coeficiente de ecuación NRTL (b12)
El coeficiente de ecuación NRTL (b12) es el coeficiente utilizado en la ecuación NRTL para el componente 1 en el sistema binario. Es independiente de la concentración y la temperatura.
Símbolo: b12
Medición: Energía por molUnidad: J/mol
Nota: El valor puede ser positivo o negativo.
constante universal de gas
La constante universal de los gases es una constante física fundamental que aparece en la ley de los gases ideales y relaciona la presión, el volumen y la temperatura de un gas ideal.
Símbolo: [R]
Valor: 8.31446261815324
constante universal de gas
La constante universal de los gases es una constante física fundamental que aparece en la ley de los gases ideales y relaciona la presión, el volumen y la temperatura de un gas ideal.
Símbolo: [R]
Valor: 8.31446261815324
constante universal de gas
La constante universal de los gases es una constante física fundamental que aparece en la ley de los gases ideales y relaciona la presión, el volumen y la temperatura de un gas ideal.
Símbolo: [R]
Valor: 8.31446261815324
constante universal de gas
La constante universal de los gases es una constante física fundamental que aparece en la ley de los gases ideales y relaciona la presión, el volumen y la temperatura de un gas ideal.
Símbolo: [R]
Valor: 8.31446261815324
constante universal de gas
La constante universal de los gases es una constante física fundamental que aparece en la ley de los gases ideales y relaciona la presión, el volumen y la temperatura de un gas ideal.
Símbolo: [R]
Valor: 8.31446261815324
constante universal de gas
La constante universal de los gases es una constante física fundamental que aparece en la ley de los gases ideales y relaciona la presión, el volumen y la temperatura de un gas ideal.
Símbolo: [R]
Valor: 8.31446261815324
constante universal de gas
La constante universal de los gases es una constante física fundamental que aparece en la ley de los gases ideales y relaciona la presión, el volumen y la temperatura de un gas ideal.
Símbolo: [R]
Valor: 8.31446261815324
exp
En una función exponencial, el valor de la función cambia en un factor constante por cada cambio de unidad en la variable independiente.
Sintaxis: exp(Number)

Otras fórmulas para encontrar Exceso de energía libre de Gibbs

​Ir Exceso de energía de Gibbs utilizando la ecuación de Wilson
GE=(-x1ln(x1+x2Λ12)-x2ln(x2+x1Λ21))[R]TWilson

Otras fórmulas en la categoría Modelos de composición local

​Ir Coeficiente de Actividad para el Componente 1 usando la Ecuación de Wilson
γ1=exp((ln(x1+x2Λ12))+x2((Λ12x1+x2Λ12)-(Λ21x2+x1Λ21)))
​Ir Coeficiente de Actividad para el Componente 1 usando la Ecuación NRTL
γ1=exp((x22)(((b21[R]TNRTL)(exp(-αb21[R]TNRTL)x1+x2exp(-αb21[R]TNRTL))2)+(exp(-αb12[R]TNRTL)b12[R]TNRTL(x2+x1exp(-αb12[R]TNRTL))2)))

¿Cómo evaluar Exceso de energía libre de Gibbs utilizando la ecuación NRTL?

El evaluador de Exceso de energía libre de Gibbs utilizando la ecuación NRTL usa Excess Gibbs Free Energy = (Fracción molar del componente 1 en fase líquida*Fracción molar del componente 2 en fase líquida*[R]*Temperatura para modelo NRTL)*((((exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b21))/[R]*Temperatura para modelo NRTL))*(Coeficiente de ecuación NRTL (b21)/([R]*Temperatura para modelo NRTL)))/(Fracción molar del componente 1 en fase líquida+Fracción molar del componente 2 en fase líquida*exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b21))/[R]*Temperatura para modelo NRTL)))+(((exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b12))/[R]*Temperatura para modelo NRTL))*(Coeficiente de ecuación NRTL (b12)/([R]*Temperatura para modelo NRTL)))/(Fracción molar del componente 2 en fase líquida+Fracción molar del componente 1 en fase líquida*exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b12))/[R]*Temperatura para modelo NRTL)))) para evaluar Exceso de energía libre de Gibbs, El exceso de energía libre de Gibbs utilizando la fórmula de la ecuación NRTL se define como una función de los parámetros independientes de la concentración, la temperatura y la fracción molar en la fase líquida de los componentes 1. Exceso de energía libre de Gibbs se indica mediante el símbolo GE.

¿Cómo evaluar Exceso de energía libre de Gibbs utilizando la ecuación NRTL usando este evaluador en línea? Para utilizar este evaluador en línea para Exceso de energía libre de Gibbs utilizando la ecuación NRTL, ingrese Fracción molar del componente 1 en fase líquida (x1), Fracción molar del componente 2 en fase líquida (x2), Temperatura para modelo NRTL (TNRTL), Coeficiente de ecuación NRTL (α) (α), Coeficiente de ecuación NRTL (b21) (b21) & Coeficiente de ecuación NRTL (b12) (b12) y presione el botón calcular.

FAQs en Exceso de energía libre de Gibbs utilizando la ecuación NRTL

¿Cuál es la fórmula para encontrar Exceso de energía libre de Gibbs utilizando la ecuación NRTL?
La fórmula de Exceso de energía libre de Gibbs utilizando la ecuación NRTL se expresa como Excess Gibbs Free Energy = (Fracción molar del componente 1 en fase líquida*Fracción molar del componente 2 en fase líquida*[R]*Temperatura para modelo NRTL)*((((exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b21))/[R]*Temperatura para modelo NRTL))*(Coeficiente de ecuación NRTL (b21)/([R]*Temperatura para modelo NRTL)))/(Fracción molar del componente 1 en fase líquida+Fracción molar del componente 2 en fase líquida*exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b21))/[R]*Temperatura para modelo NRTL)))+(((exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b12))/[R]*Temperatura para modelo NRTL))*(Coeficiente de ecuación NRTL (b12)/([R]*Temperatura para modelo NRTL)))/(Fracción molar del componente 2 en fase líquida+Fracción molar del componente 1 en fase líquida*exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b12))/[R]*Temperatura para modelo NRTL)))). Aquí hay un ejemplo: 0.025509 = (0.4*0.6*[R]*550)*((((exp(-(0.15*0.12)/[R]*550))*(0.12/([R]*550)))/(0.4+0.6*exp(-(0.15*0.12)/[R]*550)))+(((exp(-(0.15*0.19)/[R]*550))*(0.19/([R]*550)))/(0.6+0.4*exp(-(0.15*0.19)/[R]*550)))).
¿Cómo calcular Exceso de energía libre de Gibbs utilizando la ecuación NRTL?
Con Fracción molar del componente 1 en fase líquida (x1), Fracción molar del componente 2 en fase líquida (x2), Temperatura para modelo NRTL (TNRTL), Coeficiente de ecuación NRTL (α) (α), Coeficiente de ecuación NRTL (b21) (b21) & Coeficiente de ecuación NRTL (b12) (b12) podemos encontrar Exceso de energía libre de Gibbs utilizando la ecuación NRTL usando la fórmula - Excess Gibbs Free Energy = (Fracción molar del componente 1 en fase líquida*Fracción molar del componente 2 en fase líquida*[R]*Temperatura para modelo NRTL)*((((exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b21))/[R]*Temperatura para modelo NRTL))*(Coeficiente de ecuación NRTL (b21)/([R]*Temperatura para modelo NRTL)))/(Fracción molar del componente 1 en fase líquida+Fracción molar del componente 2 en fase líquida*exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b21))/[R]*Temperatura para modelo NRTL)))+(((exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b12))/[R]*Temperatura para modelo NRTL))*(Coeficiente de ecuación NRTL (b12)/([R]*Temperatura para modelo NRTL)))/(Fracción molar del componente 2 en fase líquida+Fracción molar del componente 1 en fase líquida*exp(-(Coeficiente de ecuación NRTL (α)*Coeficiente de ecuación NRTL (b12))/[R]*Temperatura para modelo NRTL)))). Esta fórmula también utiliza funciones constante universal de gas, constante universal de gas, constante universal de gas, constante universal de gas, constante universal de gas, constante universal de gas, constante universal de gas y Crecimiento exponencial (exp).
¿Cuáles son las otras formas de calcular Exceso de energía libre de Gibbs?
Estas son las diferentes formas de calcular Exceso de energía libre de Gibbs-
  • Excess Gibbs Free Energy=(-Mole Fraction of Component 1 in Liquid Phase*ln(Mole Fraction of Component 1 in Liquid Phase+Mole Fraction of Component 2 in Liquid Phase*Wilson Equation Coefficient (Λ12))-Mole Fraction of Component 2 in Liquid Phase*ln(Mole Fraction of Component 2 in Liquid Phase+Mole Fraction of Component 1 in Liquid Phase*Wilson Equation Coefficient (Λ21)))*[R]*Temperature for Wilson EquationOpenImg
¿Puede el Exceso de energía libre de Gibbs utilizando la ecuación NRTL ser negativo?
Sí, el Exceso de energía libre de Gibbs utilizando la ecuación NRTL, medido en Energía poder sea negativo.
¿Qué unidad se utiliza para medir Exceso de energía libre de Gibbs utilizando la ecuación NRTL?
Exceso de energía libre de Gibbs utilizando la ecuación NRTL generalmente se mide usando Joule[J] para Energía. kilojulio[J], gigajulio[J], megajulio[J] son las pocas otras unidades en las que se puede medir Exceso de energía libre de Gibbs utilizando la ecuación NRTL.
Copied!