Fx Copiar
LaTeX Copiar
La energía de deformación es la adsorción de energía del material debido a la deformación bajo una carga aplicada. También es igual al trabajo realizado sobre una muestra por una fuerza externa. Marque FAQs
U=JGTorsion(θ(π180))22L
U - Energía de deformación?J - Momento polar de inercia?GTorsion - Módulo de rigidez?θ - Ángulo de torsión?L - Longitud del miembro?π - La constante de Arquímedes.?

Ejemplo de Energía de deformación en torsión dado el ángulo de giro

Con valores
Con unidades
Solo ejemplo

Así es como se ve la ecuación Energía de deformación en torsión dado el ángulo de giro con Valores.

Así es como se ve la ecuación Energía de deformación en torsión dado el ángulo de giro con unidades.

Así es como se ve la ecuación Energía de deformación en torsión dado el ángulo de giro.

570.6694Edit=0.0041Edit40Edit(15Edit(3.1416180))223000Edit
Copiar
Reiniciar
Compartir
Usted está aquí -
HomeIcon Hogar » Category Ingenieria » Category Civil » Category Resistencia de materiales » fx Energía de deformación en torsión dado el ángulo de giro

Energía de deformación en torsión dado el ángulo de giro Solución

¿Sigue nuestra solución paso a paso sobre cómo calcular Energía de deformación en torsión dado el ángulo de giro?

Primer paso Considere la fórmula
U=JGTorsion(θ(π180))22L
Próximo paso Valores sustitutos de variables
U=0.0041m⁴40GPa(15°(π180))223000mm
Próximo paso Valores sustitutos de constantes
U=0.0041m⁴40GPa(15°(3.1416180))223000mm
Próximo paso Convertir unidades
U=0.0041m⁴4E+10Pa(0.2618rad(3.1416180))223m
Próximo paso Prepárese para evaluar
U=0.00414E+10(0.2618(3.1416180))223
Próximo paso Evaluar
U=570.669400490482J
Próximo paso Convertir a unidad de salida
U=570.669400490482N*m
Último paso Respuesta de redondeo
U=570.6694N*m

Energía de deformación en torsión dado el ángulo de giro Fórmula Elementos

variables
Constantes
Energía de deformación
La energía de deformación es la adsorción de energía del material debido a la deformación bajo una carga aplicada. También es igual al trabajo realizado sobre una muestra por una fuerza externa.
Símbolo: U
Medición: EnergíaUnidad: N*m
Nota: El valor puede ser positivo o negativo.
Momento polar de inercia
El momento polar de inercia es el momento de inercia de una sección transversal con respecto a su eje polar, que es un eje perpendicular al plano de la sección transversal.
Símbolo: J
Medición: Segundo momento de áreaUnidad: m⁴
Nota: El valor debe ser mayor que 0.
Módulo de rigidez
El módulo de rigidez es la medida de la rigidez del cuerpo, dada por la relación entre el esfuerzo cortante y la deformación cortante. A menudo se denota por G.
Símbolo: GTorsion
Medición: PresiónUnidad: GPa
Nota: El valor debe ser mayor que 0.
Ángulo de torsión
El ángulo de torsión es el ángulo a través del cual gira el extremo fijo de un eje con respecto al extremo libre.
Símbolo: θ
Medición: ÁnguloUnidad: °
Nota: El valor puede ser positivo o negativo.
Longitud del miembro
La longitud del miembro es la medida o extensión del miembro (viga o columna) de un extremo a otro.
Símbolo: L
Medición: LongitudUnidad: mm
Nota: El valor debe ser mayor que 0.
La constante de Arquímedes.
La constante de Arquímedes es una constante matemática que representa la relación entre la circunferencia de un círculo y su diámetro.
Símbolo: π
Valor: 3.14159265358979323846264338327950288

Otras fórmulas para encontrar Energía de deformación

​Ir Energía de deformación en cizallamiento
U=(V2)L2AGTorsion
​Ir Energía de deformación en cortante dada la deformación por cortante
U=AGTorsion(Δ2)2L
​Ir Energía de deformación en torsión dado MI polar y módulo de elasticidad de corte
U=(T2)L2JGTorsion
​Ir Energía de deformación en flexión
U=((M2)L2EI)

Otras fórmulas en la categoría Energía de deformación en miembros estructurales

​Ir Estrés usando la ley de Hook
σ=EεL
​Ir Fuerza cortante usando energía de deformación
V=2UAGTorsionL
​Ir Longitud sobre la cual se produce la deformación dada la energía de deformación en corte
L=2UAGTorsionV2
​Ir Área de corte dada Energía de deformación en corte
A=(V2)L2UGTorsion

¿Cómo evaluar Energía de deformación en torsión dado el ángulo de giro?

El evaluador de Energía de deformación en torsión dado el ángulo de giro usa Strain Energy = (Momento polar de inercia*Módulo de rigidez*(Ángulo de torsión*(pi/180))^2)/(2*Longitud del miembro) para evaluar Energía de deformación, La fórmula de energía de deformación en torsión dada el ángulo de torsión se define como la energía almacenada en un cuerpo debido a la deformación torsional. Energía de deformación se indica mediante el símbolo U.

¿Cómo evaluar Energía de deformación en torsión dado el ángulo de giro usando este evaluador en línea? Para utilizar este evaluador en línea para Energía de deformación en torsión dado el ángulo de giro, ingrese Momento polar de inercia (J), Módulo de rigidez (GTorsion), Ángulo de torsión (θ) & Longitud del miembro (L) y presione el botón calcular.

FAQs en Energía de deformación en torsión dado el ángulo de giro

¿Cuál es la fórmula para encontrar Energía de deformación en torsión dado el ángulo de giro?
La fórmula de Energía de deformación en torsión dado el ángulo de giro se expresa como Strain Energy = (Momento polar de inercia*Módulo de rigidez*(Ángulo de torsión*(pi/180))^2)/(2*Longitud del miembro). Aquí hay un ejemplo: 570.6694 = (0.0041*40000000000*(0.2617993877991*(pi/180))^2)/(2*3).
¿Cómo calcular Energía de deformación en torsión dado el ángulo de giro?
Con Momento polar de inercia (J), Módulo de rigidez (GTorsion), Ángulo de torsión (θ) & Longitud del miembro (L) podemos encontrar Energía de deformación en torsión dado el ángulo de giro usando la fórmula - Strain Energy = (Momento polar de inercia*Módulo de rigidez*(Ángulo de torsión*(pi/180))^2)/(2*Longitud del miembro). Esta fórmula también usa La constante de Arquímedes. .
¿Cuáles son las otras formas de calcular Energía de deformación?
Estas son las diferentes formas de calcular Energía de deformación-
  • Strain Energy=(Shear Force^2)*Length of Member/(2*Area of Cross-Section*Modulus of Rigidity)OpenImg
  • Strain Energy=(Area of Cross-Section*Modulus of Rigidity*(Shear Deformation^2))/(2*Length of Member)OpenImg
  • Strain Energy=(Torque SOM^2)*Length of Member/(2*Polar Moment of Inertia*Modulus of Rigidity)OpenImg
¿Puede el Energía de deformación en torsión dado el ángulo de giro ser negativo?
Sí, el Energía de deformación en torsión dado el ángulo de giro, medido en Energía poder sea negativo.
¿Qué unidad se utiliza para medir Energía de deformación en torsión dado el ángulo de giro?
Energía de deformación en torsión dado el ángulo de giro generalmente se mide usando Metro de Newton[N*m] para Energía. Joule[N*m], kilojulio[N*m], gigajulio[N*m] son las pocas otras unidades en las que se puede medir Energía de deformación en torsión dado el ángulo de giro.
Copied!