Fx Copiar
LaTeX Copiar
La diagonal corta del cuadrilátero de arco circular es una línea recta que une dos esquinas no adyacentes de un cuadrilátero de arco circular. Marque FAQs
dShort=2(2-1)P2π
dShort - Diagonal corta del cuadrilátero de arco circular?P - Perímetro del Cuadrángulo del Arco Circular?π - La constante de Arquímedes.?

Ejemplo de Diagonal corta del cuadrángulo del arco circular dado el perímetro

Con valores
Con unidades
Solo ejemplo

Así es como se ve la ecuación Diagonal corta del cuadrángulo del arco circular dado el perímetro con Valores.

Así es como se ve la ecuación Diagonal corta del cuadrángulo del arco circular dado el perímetro con unidades.

Así es como se ve la ecuación Diagonal corta del cuadrángulo del arco circular dado el perímetro.

12.5256Edit=2(2-1)95Edit23.1416
Copiar
Reiniciar
Compartir
Usted está aquí -
HomeIcon Hogar » Category Mates » Category Geometría » Category Geometría 2D » fx Diagonal corta del cuadrángulo del arco circular dado el perímetro

Diagonal corta del cuadrángulo del arco circular dado el perímetro Solución

¿Sigue nuestra solución paso a paso sobre cómo calcular Diagonal corta del cuadrángulo del arco circular dado el perímetro?

Primer paso Considere la fórmula
dShort=2(2-1)P2π
Próximo paso Valores sustitutos de variables
dShort=2(2-1)95m2π
Próximo paso Valores sustitutos de constantes
dShort=2(2-1)95m23.1416
Próximo paso Prepárese para evaluar
dShort=2(2-1)9523.1416
Próximo paso Evaluar
dShort=12.5255858300024m
Último paso Respuesta de redondeo
dShort=12.5256m

Diagonal corta del cuadrángulo del arco circular dado el perímetro Fórmula Elementos

variables
Constantes
Funciones
Diagonal corta del cuadrilátero de arco circular
La diagonal corta del cuadrilátero de arco circular es una línea recta que une dos esquinas no adyacentes de un cuadrilátero de arco circular.
Símbolo: dShort
Medición: LongitudUnidad: m
Nota: El valor debe ser mayor que 0.
Perímetro del Cuadrángulo del Arco Circular
El perímetro del cuadrilátero de arco circular es la distancia total alrededor del borde del cuadrilátero de arco circular.
Símbolo: P
Medición: LongitudUnidad: m
Nota: El valor debe ser mayor que 0.
La constante de Arquímedes.
La constante de Arquímedes es una constante matemática que representa la relación entre la circunferencia de un círculo y su diámetro.
Símbolo: π
Valor: 3.14159265358979323846264338327950288
sqrt
Una función de raíz cuadrada es una función que toma un número no negativo como entrada y devuelve la raíz cuadrada del número de entrada dado.
Sintaxis: sqrt(Number)

Otras fórmulas para encontrar Diagonal corta del cuadrilátero de arco circular

​Ir Diagonal corta del cuadrilátero de arco circular
dShort=2(2-1)rCircle
​Ir Diagonal corta del cuadrilátero de arco circular dado Diagonal larga
dShort=2(2-1)dLong2
​Ir Área dada de la diagonal corta del cuadrángulo del arco circular
dShort=2(2-1)A4-π

¿Cómo evaluar Diagonal corta del cuadrángulo del arco circular dado el perímetro?

El evaluador de Diagonal corta del cuadrángulo del arco circular dado el perímetro usa Short Diagonal of Circular Arc Quadrangle = 2*(sqrt(2)-1)*Perímetro del Cuadrángulo del Arco Circular/(2*pi) para evaluar Diagonal corta del cuadrilátero de arco circular, La fórmula Diagonal Corta del Cuadrángulo de Arco Circular dado el Perímetro se define como la línea recta que une dos esquinas opuestas del Cuadrángulo de Arco Circular, calculada usando su perímetro. Diagonal corta del cuadrilátero de arco circular se indica mediante el símbolo dShort.

¿Cómo evaluar Diagonal corta del cuadrángulo del arco circular dado el perímetro usando este evaluador en línea? Para utilizar este evaluador en línea para Diagonal corta del cuadrángulo del arco circular dado el perímetro, ingrese Perímetro del Cuadrángulo del Arco Circular (P) y presione el botón calcular.

FAQs en Diagonal corta del cuadrángulo del arco circular dado el perímetro

¿Cuál es la fórmula para encontrar Diagonal corta del cuadrángulo del arco circular dado el perímetro?
La fórmula de Diagonal corta del cuadrángulo del arco circular dado el perímetro se expresa como Short Diagonal of Circular Arc Quadrangle = 2*(sqrt(2)-1)*Perímetro del Cuadrángulo del Arco Circular/(2*pi). Aquí hay un ejemplo: 12.52559 = 2*(sqrt(2)-1)*95/(2*pi).
¿Cómo calcular Diagonal corta del cuadrángulo del arco circular dado el perímetro?
Con Perímetro del Cuadrángulo del Arco Circular (P) podemos encontrar Diagonal corta del cuadrángulo del arco circular dado el perímetro usando la fórmula - Short Diagonal of Circular Arc Quadrangle = 2*(sqrt(2)-1)*Perímetro del Cuadrángulo del Arco Circular/(2*pi). Esta fórmula también utiliza funciones La constante de Arquímedes. y Raíz cuadrada (sqrt).
¿Cuáles son las otras formas de calcular Diagonal corta del cuadrilátero de arco circular?
Estas son las diferentes formas de calcular Diagonal corta del cuadrilátero de arco circular-
  • Short Diagonal of Circular Arc Quadrangle=2*(sqrt(2)-1)*Radius of Circle of Circular Arc QuadrangleOpenImg
  • Short Diagonal of Circular Arc Quadrangle=2*(sqrt(2)-1)*Long Diagonal of Circular Arc Quadrangle/2OpenImg
  • Short Diagonal of Circular Arc Quadrangle=2*(sqrt(2)-1)*sqrt(Area of Circular Arc Quadrangle/(4-pi))OpenImg
¿Puede el Diagonal corta del cuadrángulo del arco circular dado el perímetro ser negativo?
No, el Diagonal corta del cuadrángulo del arco circular dado el perímetro, medido en Longitud no puedo sea negativo.
¿Qué unidad se utiliza para medir Diagonal corta del cuadrángulo del arco circular dado el perímetro?
Diagonal corta del cuadrángulo del arco circular dado el perímetro generalmente se mide usando Metro[m] para Longitud. Milímetro[m], Kilómetro[m], Decímetro[m] son las pocas otras unidades en las que se puede medir Diagonal corta del cuadrángulo del arco circular dado el perímetro.
Copied!