Fx Copy
LaTeX Copy
Volume of Pentagonal Hexecontahedron is the quantity of three dimensional space enclosed by the entire surface of Pentagonal Hexecontahedron. Check FAQs
V=5(31le(Long)((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))2+2(0.4715756))3(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756
V - Volume of Pentagonal Hexecontahedron?le(Long) - Long Edge of Pentagonal Hexecontahedron?[phi] - Golden ratio?[phi] - Golden ratio?[phi] - Golden ratio?

Volume of Pentagonal Hexecontahedron given Long Edge Example

With values
With units
Only example

Here is how the Volume of Pentagonal Hexecontahedron given Long Edge equation looks like with Values.

Here is how the Volume of Pentagonal Hexecontahedron given Long Edge equation looks like with Units.

Here is how the Volume of Pentagonal Hexecontahedron given Long Edge equation looks like.

16035.0064Edit=5(316Edit((71.618+2)+(51.618-3)+2(8-31.618))2+2(0.4715756))3(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756
You are here -
HomeIcon Home » Category Math » Category Geometry » Category 3D Geometry » fx Volume of Pentagonal Hexecontahedron given Long Edge

Volume of Pentagonal Hexecontahedron given Long Edge Solution

Follow our step by step solution on how to calculate Volume of Pentagonal Hexecontahedron given Long Edge?

FIRST Step Consider the formula
V=5(31le(Long)((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))2+2(0.4715756))3(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756
Next Step Substitute values of Variables
V=5(316m((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))2+2(0.4715756))3(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756
Next Step Substitute values of Constants
V=5(316m((71.618+2)+(51.618-3)+2(8-31.618))2+2(0.4715756))3(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756
Next Step Prepare to Evaluate
V=5(316((71.618+2)+(51.618-3)+2(8-31.618))2+2(0.4715756))3(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756
Next Step Evaluate
V=16035.0063951357
LAST Step Rounding Answer
V=16035.0064

Volume of Pentagonal Hexecontahedron given Long Edge Formula Elements

Variables
Constants
Functions
Volume of Pentagonal Hexecontahedron
Volume of Pentagonal Hexecontahedron is the quantity of three dimensional space enclosed by the entire surface of Pentagonal Hexecontahedron.
Symbol: V
Measurement: VolumeUnit:
Note: Value should be greater than 0.
Long Edge of Pentagonal Hexecontahedron
Long Edge of Pentagonal Hexecontahedron is the length of longest edge which is the top edge of the axial-symmetric pentagonal faces of Pentagonal Hexecontahedron.
Symbol: le(Long)
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Golden ratio
The Golden ratio occurs when the ratio of two numbers is the same as the ratio of their sum to the larger of the two numbers.
Symbol: [phi]
Value: 1.61803398874989484820458683436563811
Golden ratio
The Golden ratio occurs when the ratio of two numbers is the same as the ratio of their sum to the larger of the two numbers.
Symbol: [phi]
Value: 1.61803398874989484820458683436563811
Golden ratio
The Golden ratio occurs when the ratio of two numbers is the same as the ratio of their sum to the larger of the two numbers.
Symbol: [phi]
Value: 1.61803398874989484820458683436563811
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Volume of Pentagonal Hexecontahedron

​Go Volume of Pentagonal Hexecontahedron
V=5le(Short)3(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756
​Go Volume of Pentagonal Hexecontahedron given Snub Dodecahedron Edge
V=5(le(Snub Dodecahedron)2+2(0.4715756))3(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756
​Go Volume of Pentagonal Hexecontahedron given Total Surface Area
V=5(TSA(1-20.47157562)30(2+30.4715756)1-0.47157562)32(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756
​Go Volume of Pentagonal Hexecontahedron given Midsphere Radius
V=5(rm1+0.47157562(1-20.4715756))3(1+0.4715756)(2+30.4715756)(1-20.47157562)1-20.4715756

How to Evaluate Volume of Pentagonal Hexecontahedron given Long Edge?

Volume of Pentagonal Hexecontahedron given Long Edge evaluator uses Volume of Pentagonal Hexecontahedron = 5*((31*Long Edge of Pentagonal Hexecontahedron)/(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi]))*sqrt(2+2*(0.4715756))))^3*((1+0.4715756)*(2+3*0.4715756))/((1-2*0.4715756^2)*sqrt(1-2*0.4715756)) to evaluate the Volume of Pentagonal Hexecontahedron, Volume of Pentagonal Hexecontahedron given Long Edge formula is defined as the quantity of three-dimensional space enclosed by the entire surface of the Pentagonal Hexecontahedron, calculated using long edge of Pentagonal Hexecontahedron. Volume of Pentagonal Hexecontahedron is denoted by V symbol.

How to evaluate Volume of Pentagonal Hexecontahedron given Long Edge using this online evaluator? To use this online evaluator for Volume of Pentagonal Hexecontahedron given Long Edge, enter Long Edge of Pentagonal Hexecontahedron (le(Long)) and hit the calculate button.

FAQs on Volume of Pentagonal Hexecontahedron given Long Edge

What is the formula to find Volume of Pentagonal Hexecontahedron given Long Edge?
The formula of Volume of Pentagonal Hexecontahedron given Long Edge is expressed as Volume of Pentagonal Hexecontahedron = 5*((31*Long Edge of Pentagonal Hexecontahedron)/(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi]))*sqrt(2+2*(0.4715756))))^3*((1+0.4715756)*(2+3*0.4715756))/((1-2*0.4715756^2)*sqrt(1-2*0.4715756)). Here is an example- 16035.01 = 5*((31*6)/(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi]))*sqrt(2+2*(0.4715756))))^3*((1+0.4715756)*(2+3*0.4715756))/((1-2*0.4715756^2)*sqrt(1-2*0.4715756)).
How to calculate Volume of Pentagonal Hexecontahedron given Long Edge?
With Long Edge of Pentagonal Hexecontahedron (le(Long)) we can find Volume of Pentagonal Hexecontahedron given Long Edge using the formula - Volume of Pentagonal Hexecontahedron = 5*((31*Long Edge of Pentagonal Hexecontahedron)/(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi]))*sqrt(2+2*(0.4715756))))^3*((1+0.4715756)*(2+3*0.4715756))/((1-2*0.4715756^2)*sqrt(1-2*0.4715756)). This formula also uses Golden ratio, Golden ratio, Golden ratio constant(s) and Square Root (sqrt) function(s).
What are the other ways to Calculate Volume of Pentagonal Hexecontahedron?
Here are the different ways to Calculate Volume of Pentagonal Hexecontahedron-
  • Volume of Pentagonal Hexecontahedron=5*Short Edge of Pentagonal Hexecontahedron^3*((1+0.4715756)*(2+3*0.4715756))/((1-2*0.4715756^2)*sqrt(1-2*0.4715756))OpenImg
  • Volume of Pentagonal Hexecontahedron=5*(Snub Dodecahedron Edge Pentagonal Hexecontahedron/sqrt(2+2*(0.4715756)))^3*((1+0.4715756)*(2+3*0.4715756))/((1-2*0.4715756^2)*sqrt(1-2*0.4715756))OpenImg
  • Volume of Pentagonal Hexecontahedron=5*((Total Surface Area of Pentagonal Hexecontahedron*(1-2*0.4715756^2))/(30*(2+3*0.4715756)*sqrt(1-0.4715756^2)))^(3/2)*((1+0.4715756)*(2+3*0.4715756))/((1-2*0.4715756^2)*sqrt(1-2*0.4715756))OpenImg
Can the Volume of Pentagonal Hexecontahedron given Long Edge be negative?
No, the Volume of Pentagonal Hexecontahedron given Long Edge, measured in Volume cannot be negative.
Which unit is used to measure Volume of Pentagonal Hexecontahedron given Long Edge?
Volume of Pentagonal Hexecontahedron given Long Edge is usually measured using the Cubic Meter[m³] for Volume. Cubic Centimeter[m³], Cubic Millimeter[m³], Liter[m³] are the few other units in which Volume of Pentagonal Hexecontahedron given Long Edge can be measured.
Copied!