Fx Copy
LaTeX Copy
Volume of Ingot is the total quantity of three dimensional space enclosed by the surface of the Ingot. Check FAQs
V=dSpace2-(lLarge Rectangle+lSmall Rectangle)24-(wLarge Rectangle+wSmall Rectangle)243((lLarge RectanglewLarge Rectangle)+lLarge RectanglewLarge RectanglelSmall RectanglewSmall Rectangle+(lSmall RectanglewSmall Rectangle))
V - Volume of Ingot?dSpace - Space Diagonal of Ingot?lLarge Rectangle - Larger Rectangular Length of Ingot?lSmall Rectangle - Smaller Rectangular Length of Ingot?wLarge Rectangle - Larger Rectangular Width of Ingot?wSmall Rectangle - Smaller Rectangular Width of Ingot?

Volume of Ingot given Space Diagonal Example

With values
With units
Only example

Here is how the Volume of Ingot given Space Diagonal equation looks like with Values.

Here is how the Volume of Ingot given Space Diagonal equation looks like with Units.

Here is how the Volume of Ingot given Space Diagonal equation looks like.

26038.5651Edit=56Edit2-(50Edit+20Edit)24-(25Edit+10Edit)243((50Edit25Edit)+50Edit25Edit20Edit10Edit+(20Edit10Edit))
You are here -
HomeIcon Home » Category Math » Category Geometry » Category 3D Geometry » fx Volume of Ingot given Space Diagonal

Volume of Ingot given Space Diagonal Solution

Follow our step by step solution on how to calculate Volume of Ingot given Space Diagonal?

FIRST Step Consider the formula
V=dSpace2-(lLarge Rectangle+lSmall Rectangle)24-(wLarge Rectangle+wSmall Rectangle)243((lLarge RectanglewLarge Rectangle)+lLarge RectanglewLarge RectanglelSmall RectanglewSmall Rectangle+(lSmall RectanglewSmall Rectangle))
Next Step Substitute values of Variables
V=56m2-(50m+20m)24-(25m+10m)243((50m25m)+50m25m20m10m+(20m10m))
Next Step Prepare to Evaluate
V=562-(50+20)24-(25+10)243((5025)+50252010+(2010))
Next Step Evaluate
V=26038.5651486406
LAST Step Rounding Answer
V=26038.5651

Volume of Ingot given Space Diagonal Formula Elements

Variables
Functions
Volume of Ingot
Volume of Ingot is the total quantity of three dimensional space enclosed by the surface of the Ingot.
Symbol: V
Measurement: VolumeUnit:
Note: Value should be greater than 0.
Space Diagonal of Ingot
Space Diagonal of Ingot is the distance between one corner of top rectangular face and the diagonally opposite corner of the bottom rectangular face of the Ingot.
Symbol: dSpace
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Larger Rectangular Length of Ingot
Larger Rectangular Length of Ingot is the length of the longer pair of opposite sides of the larger rectangular face of the Ingot.
Symbol: lLarge Rectangle
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Smaller Rectangular Length of Ingot
Smaller Rectangular Length of Ingot is the length of the longer pair of opposite sides of the smaller rectangular face of the Ingot.
Symbol: lSmall Rectangle
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Larger Rectangular Width of Ingot
Larger Rectangular Width of Ingot is the length of the shorter pair of opposite sides of the larger rectangular face of the Ingot.
Symbol: wLarge Rectangle
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Smaller Rectangular Width of Ingot
Smaller Rectangular Width of Ingot is the length of the shorter pair of opposite sides of the smaller rectangular face of the Ingot.
Symbol: wSmall Rectangle
Measurement: LengthUnit: m
Note: Value should be greater than 0.
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Volume of Ingot

​Go Volume of Ingot
V=h3((lLarge RectanglewLarge Rectangle)+lLarge RectanglewLarge RectanglelSmall RectanglewSmall Rectangle+(lSmall RectanglewSmall Rectangle))
​Go Volume of Ingot given Slant Height at Rectangular Lengths
V=hSlant(Length)2-(wLarge Rectangle-wSmall Rectangle)243((lLarge RectanglewLarge Rectangle)+lLarge RectanglewLarge RectanglelSmall RectanglewSmall Rectangle+(lSmall RectanglewSmall Rectangle))
​Go Volume of Ingot given Slant Height at Rectangular Widths
V=hSlant(Width)2-(lLarge Rectangle-lSmall Rectangle)243((lLarge RectanglewLarge Rectangle)+lLarge RectanglewLarge RectanglelSmall RectanglewSmall Rectangle+(lSmall RectanglewSmall Rectangle))
​Go Volume of Ingot given Skewed Edge Length
V=le(Skewed)2-(lLarge Rectangle-lSmall Rectangle)24-(wLarge Rectangle-wSmall Rectangle)243((lLarge RectanglewLarge Rectangle)+lLarge RectanglewLarge RectanglelSmall RectanglewSmall Rectangle+(lSmall RectanglewSmall Rectangle))

How to Evaluate Volume of Ingot given Space Diagonal?

Volume of Ingot given Space Diagonal evaluator uses Volume of Ingot = sqrt(Space Diagonal of Ingot^2-(Larger Rectangular Length of Ingot+Smaller Rectangular Length of Ingot)^2/4-(Larger Rectangular Width of Ingot+Smaller Rectangular Width of Ingot)^2/4)/3*((Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot)+sqrt(Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot*Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot)+(Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot)) to evaluate the Volume of Ingot, Volume of Ingot given Space Diagonal formula is defined as the total quantity of three dimensional space enclosed by the surface of the Ingot, calculated using its space diagonal. Volume of Ingot is denoted by V symbol.

How to evaluate Volume of Ingot given Space Diagonal using this online evaluator? To use this online evaluator for Volume of Ingot given Space Diagonal, enter Space Diagonal of Ingot (dSpace), Larger Rectangular Length of Ingot (lLarge Rectangle), Smaller Rectangular Length of Ingot (lSmall Rectangle), Larger Rectangular Width of Ingot (wLarge Rectangle) & Smaller Rectangular Width of Ingot (wSmall Rectangle) and hit the calculate button.

FAQs on Volume of Ingot given Space Diagonal

What is the formula to find Volume of Ingot given Space Diagonal?
The formula of Volume of Ingot given Space Diagonal is expressed as Volume of Ingot = sqrt(Space Diagonal of Ingot^2-(Larger Rectangular Length of Ingot+Smaller Rectangular Length of Ingot)^2/4-(Larger Rectangular Width of Ingot+Smaller Rectangular Width of Ingot)^2/4)/3*((Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot)+sqrt(Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot*Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot)+(Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot)). Here is an example- 26038.57 = sqrt(56^2-(50+20)^2/4-(25+10)^2/4)/3*((50*25)+sqrt(50*25*20*10)+(20*10)).
How to calculate Volume of Ingot given Space Diagonal?
With Space Diagonal of Ingot (dSpace), Larger Rectangular Length of Ingot (lLarge Rectangle), Smaller Rectangular Length of Ingot (lSmall Rectangle), Larger Rectangular Width of Ingot (wLarge Rectangle) & Smaller Rectangular Width of Ingot (wSmall Rectangle) we can find Volume of Ingot given Space Diagonal using the formula - Volume of Ingot = sqrt(Space Diagonal of Ingot^2-(Larger Rectangular Length of Ingot+Smaller Rectangular Length of Ingot)^2/4-(Larger Rectangular Width of Ingot+Smaller Rectangular Width of Ingot)^2/4)/3*((Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot)+sqrt(Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot*Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot)+(Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot)). This formula also uses Square Root (sqrt) function(s).
What are the other ways to Calculate Volume of Ingot?
Here are the different ways to Calculate Volume of Ingot-
  • Volume of Ingot=Height of Ingot/3*((Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot)+sqrt(Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot*Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot)+(Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot))OpenImg
  • Volume of Ingot=sqrt(Slant Height at Rectangular Lengths of Ingot^2-((Larger Rectangular Width of Ingot-Smaller Rectangular Width of Ingot)^2)/4)/3*((Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot)+sqrt(Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot*Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot)+(Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot))OpenImg
  • Volume of Ingot=sqrt(Slant Height at Rectangular Widths of Ingot^2-(Larger Rectangular Length of Ingot-Smaller Rectangular Length of Ingot)^2/4)/3*((Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot)+sqrt(Larger Rectangular Length of Ingot*Larger Rectangular Width of Ingot*Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot)+(Smaller Rectangular Length of Ingot*Smaller Rectangular Width of Ingot))OpenImg
Can the Volume of Ingot given Space Diagonal be negative?
No, the Volume of Ingot given Space Diagonal, measured in Volume cannot be negative.
Which unit is used to measure Volume of Ingot given Space Diagonal?
Volume of Ingot given Space Diagonal is usually measured using the Cubic Meter[m³] for Volume. Cubic Centimeter[m³], Cubic Millimeter[m³], Liter[m³] are the few other units in which Volume of Ingot given Space Diagonal can be measured.
Copied!