Fx Copy
LaTeX Copy
Total Surface Area of Parallelepiped is the total quantity of plane enclosed by the entire surface of the Parallelepiped. Check FAQs
TSA=2((SaSbsin(∠γ))+Vsin(∠β)Sb1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)+Vsin(∠α)Sa1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2))
TSA - Total Surface Area of Parallelepiped?Sa - Side A of Parallelepiped?Sb - Side B of Parallelepiped?∠γ - Angle Gamma of Parallelepiped?V - Volume of Parallelepiped?∠β - Angle Beta of Parallelepiped?∠α - Angle Alpha of Parallelepiped?

Total Surface Area of Parallelepiped given Volume, Side A and Side B Example

With values
With units
Only example

Here is how the Total Surface Area of Parallelepiped given Volume, Side A and Side B equation looks like with Values.

Here is how the Total Surface Area of Parallelepiped given Volume, Side A and Side B equation looks like with Units.

Here is how the Total Surface Area of Parallelepiped given Volume, Side A and Side B equation looks like.

1961.5685Edit=2((30Edit20Editsin(75Edit))+3630Editsin(60Edit)20Edit1+(2cos(45Edit)cos(60Edit)cos(75Edit))-(cos(45Edit)2+cos(60Edit)2+cos(75Edit)2)+3630Editsin(45Edit)30Edit1+(2cos(45Edit)cos(60Edit)cos(75Edit))-(cos(45Edit)2+cos(60Edit)2+cos(75Edit)2))
You are here -

Total Surface Area of Parallelepiped given Volume, Side A and Side B Solution

Follow our step by step solution on how to calculate Total Surface Area of Parallelepiped given Volume, Side A and Side B?

FIRST Step Consider the formula
TSA=2((SaSbsin(∠γ))+Vsin(∠β)Sb1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2)+Vsin(∠α)Sa1+(2cos(∠α)cos(∠β)cos(∠γ))-(cos(∠α)2+cos(∠β)2+cos(∠γ)2))
Next Step Substitute values of Variables
TSA=2((30m20msin(75°))+3630sin(60°)20m1+(2cos(45°)cos(60°)cos(75°))-(cos(45°)2+cos(60°)2+cos(75°)2)+3630sin(45°)30m1+(2cos(45°)cos(60°)cos(75°))-(cos(45°)2+cos(60°)2+cos(75°)2))
Next Step Convert Units
TSA=2((30m20msin(1.309rad))+3630sin(1.0472rad)20m1+(2cos(0.7854rad)cos(1.0472rad)cos(1.309rad))-(cos(0.7854rad)2+cos(1.0472rad)2+cos(1.309rad)2)+3630sin(0.7854rad)30m1+(2cos(0.7854rad)cos(1.0472rad)cos(1.309rad))-(cos(0.7854rad)2+cos(1.0472rad)2+cos(1.309rad)2))
Next Step Prepare to Evaluate
TSA=2((3020sin(1.309))+3630sin(1.0472)201+(2cos(0.7854)cos(1.0472)cos(1.309))-(cos(0.7854)2+cos(1.0472)2+cos(1.309)2)+3630sin(0.7854)301+(2cos(0.7854)cos(1.0472)cos(1.309))-(cos(0.7854)2+cos(1.0472)2+cos(1.309)2))
Next Step Evaluate
TSA=1961.56850367247
LAST Step Rounding Answer
TSA=1961.5685

Total Surface Area of Parallelepiped given Volume, Side A and Side B Formula Elements

Variables
Functions
Total Surface Area of Parallelepiped
Total Surface Area of Parallelepiped is the total quantity of plane enclosed by the entire surface of the Parallelepiped.
Symbol: TSA
Measurement: AreaUnit:
Note: Value should be greater than 0.
Side A of Parallelepiped
Side A of Parallelepiped is the length of any one out of the three sides from any fixed vertex of the Parallelepiped.
Symbol: Sa
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Side B of Parallelepiped
Side B of Parallelepiped is the length of any one out of the three sides from any fixed vertex of the Parallelepiped.
Symbol: Sb
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Angle Gamma of Parallelepiped
Angle Gamma of Parallelepiped is the angle formed by side A and side B at any of the two sharp tips of the Parallelepiped.
Symbol: ∠γ
Measurement: AngleUnit: °
Note: Value should be between 0 to 180.
Volume of Parallelepiped
Volume of Parallelepiped is the total quantity of three-dimensional space enclosed by the surface of the Parallelepiped.
Symbol: V
Measurement: VolumeUnit:
Note: Value should be greater than 0.
Angle Beta of Parallelepiped
Angle Beta of Parallelepiped is the angle formed by side A and side C at any of the two sharp tips of the Parallelepiped.
Symbol: ∠β
Measurement: AngleUnit: °
Note: Value should be between 0 to 180.
Angle Alpha of Parallelepiped
Angle Alpha of Parallelepiped is the angle formed by side B and side C at any of the two sharp tips of the Parallelepiped.
Symbol: ∠α
Measurement: AngleUnit: °
Note: Value should be between 0 to 180.
sin
Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
Syntax: sin(Angle)
cos
Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
Syntax: cos(Angle)
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Total Surface Area of Parallelepiped

​Go Total Surface Area of Parallelepiped
TSA=2((SaSbsin(∠γ))+(SaScsin(∠β))+(SbScsin(∠α)))
​Go Total Surface Area of Parallelepiped given Lateral Surface Area
TSA=LSA+2SaScsin(∠β)

How to Evaluate Total Surface Area of Parallelepiped given Volume, Side A and Side B?

Total Surface Area of Parallelepiped given Volume, Side A and Side B evaluator uses Total Surface Area of Parallelepiped = 2*((Side A of Parallelepiped*Side B of Parallelepiped*sin(Angle Gamma of Parallelepiped))+(Volume of Parallelepiped*sin(Angle Beta of Parallelepiped))/(Side B of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Volume of Parallelepiped*sin(Angle Alpha of Parallelepiped))/(Side A of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))) to evaluate the Total Surface Area of Parallelepiped, The Total Surface Area of Parallelepiped given Volume, Side A and Side B formula is defined as measure of the total quantity of plane enclosed by the entire surface of the Parallelepiped, calculated using volume, side A and side B of Parallelepiped. Total Surface Area of Parallelepiped is denoted by TSA symbol.

How to evaluate Total Surface Area of Parallelepiped given Volume, Side A and Side B using this online evaluator? To use this online evaluator for Total Surface Area of Parallelepiped given Volume, Side A and Side B, enter Side A of Parallelepiped (Sa), Side B of Parallelepiped (Sb), Angle Gamma of Parallelepiped (∠γ), Volume of Parallelepiped (V), Angle Beta of Parallelepiped (∠β) & Angle Alpha of Parallelepiped (∠α) and hit the calculate button.

FAQs on Total Surface Area of Parallelepiped given Volume, Side A and Side B

What is the formula to find Total Surface Area of Parallelepiped given Volume, Side A and Side B?
The formula of Total Surface Area of Parallelepiped given Volume, Side A and Side B is expressed as Total Surface Area of Parallelepiped = 2*((Side A of Parallelepiped*Side B of Parallelepiped*sin(Angle Gamma of Parallelepiped))+(Volume of Parallelepiped*sin(Angle Beta of Parallelepiped))/(Side B of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Volume of Parallelepiped*sin(Angle Alpha of Parallelepiped))/(Side A of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))). Here is an example- 1961.569 = 2*((30*20*sin(1.3089969389955))+(3630*sin(1.0471975511964))/(20*sqrt(1+(2*cos(0.785398163397301)*cos(1.0471975511964)*cos(1.3089969389955))-(cos(0.785398163397301)^2+cos(1.0471975511964)^2+cos(1.3089969389955)^2)))+(3630*sin(0.785398163397301))/(30*sqrt(1+(2*cos(0.785398163397301)*cos(1.0471975511964)*cos(1.3089969389955))-(cos(0.785398163397301)^2+cos(1.0471975511964)^2+cos(1.3089969389955)^2)))).
How to calculate Total Surface Area of Parallelepiped given Volume, Side A and Side B?
With Side A of Parallelepiped (Sa), Side B of Parallelepiped (Sb), Angle Gamma of Parallelepiped (∠γ), Volume of Parallelepiped (V), Angle Beta of Parallelepiped (∠β) & Angle Alpha of Parallelepiped (∠α) we can find Total Surface Area of Parallelepiped given Volume, Side A and Side B using the formula - Total Surface Area of Parallelepiped = 2*((Side A of Parallelepiped*Side B of Parallelepiped*sin(Angle Gamma of Parallelepiped))+(Volume of Parallelepiped*sin(Angle Beta of Parallelepiped))/(Side B of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Volume of Parallelepiped*sin(Angle Alpha of Parallelepiped))/(Side A of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))). This formula also uses Sine (sin)Cosine (cos), Square Root (sqrt) function(s).
What are the other ways to Calculate Total Surface Area of Parallelepiped?
Here are the different ways to Calculate Total Surface Area of Parallelepiped-
  • Total Surface Area of Parallelepiped=2*((Side A of Parallelepiped*Side B of Parallelepiped*sin(Angle Gamma of Parallelepiped))+(Side A of Parallelepiped*Side C of Parallelepiped*sin(Angle Beta of Parallelepiped))+(Side B of Parallelepiped*Side C of Parallelepiped*sin(Angle Alpha of Parallelepiped)))OpenImg
  • Total Surface Area of Parallelepiped=Lateral Surface Area of Parallelepiped+2*Side A of Parallelepiped*Side C of Parallelepiped*sin(Angle Beta of Parallelepiped)OpenImg
  • Total Surface Area of Parallelepiped=2*((Volume of Parallelepiped*sin(Angle Gamma of Parallelepiped))/(Side C of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Volume of Parallelepiped*sin(Angle Beta of Parallelepiped))/(Side B of Parallelepiped*sqrt(1+(2*cos(Angle Alpha of Parallelepiped)*cos(Angle Beta of Parallelepiped)*cos(Angle Gamma of Parallelepiped))-(cos(Angle Alpha of Parallelepiped)^2+cos(Angle Beta of Parallelepiped)^2+cos(Angle Gamma of Parallelepiped)^2)))+(Side B of Parallelepiped*Side C of Parallelepiped*sin(Angle Alpha of Parallelepiped)))OpenImg
Can the Total Surface Area of Parallelepiped given Volume, Side A and Side B be negative?
No, the Total Surface Area of Parallelepiped given Volume, Side A and Side B, measured in Area cannot be negative.
Which unit is used to measure Total Surface Area of Parallelepiped given Volume, Side A and Side B?
Total Surface Area of Parallelepiped given Volume, Side A and Side B is usually measured using the Square Meter[m²] for Area. Square Kilometer[m²], Square Centimeter[m²], Square Millimeter[m²] are the few other units in which Total Surface Area of Parallelepiped given Volume, Side A and Side B can be measured.
Copied!