Tan (3pi/2-A) Formula

Fx Copy
LaTeX Copy
Tan (3pi/2-A) is the value of the trigonometric tangent function of the difference between 3*pi/2(270 degrees) and the given angle A, which shows shifting of angle -A by 3*pi/2. Check FAQs
tan(3π/2-A)=cot(A)
tan(3π/2-A) - Tan (3pi/2-A)?A - Angle A of Trigonometry?

Tan (3pi/2-A) Example

With values
With units
Only example

Here is how the Tan (3pi/2-A) equation looks like with Values.

Here is how the Tan (3pi/2-A) equation looks like with Units.

Here is how the Tan (3pi/2-A) equation looks like.

2.7475Edit=cot(20Edit)
You are here -
HomeIcon Home » Category Math » Category Trigonometry and Inverse Trigonometry » Category Trigonometry » fx Tan (3pi/2-A)

Tan (3pi/2-A) Solution

Follow our step by step solution on how to calculate Tan (3pi/2-A)?

FIRST Step Consider the formula
tan(3π/2-A)=cot(A)
Next Step Substitute values of Variables
tan(3π/2-A)=cot(20°)
Next Step Convert Units
tan(3π/2-A)=cot(0.3491rad)
Next Step Prepare to Evaluate
tan(3π/2-A)=cot(0.3491)
Next Step Evaluate
tan(3π/2-A)=2.74747741945519
LAST Step Rounding Answer
tan(3π/2-A)=2.7475

Tan (3pi/2-A) Formula Elements

Variables
Functions
Tan (3pi/2-A)
Tan (3pi/2-A) is the value of the trigonometric tangent function of the difference between 3*pi/2(270 degrees) and the given angle A, which shows shifting of angle -A by 3*pi/2.
Symbol: tan(3π/2-A)
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Angle A of Trigonometry
Angle A of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: A
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
cot
Cotangent is a trigonometric function that is defined as the ratio of the adjacent side to the opposite side in a right triangle.
Syntax: cot(Angle)

Other formulas in Periodicity or Cofunction Identities category

​Go Cos (pi/2-A)
cos(π/2-A)=sin(A)
​Go Sin (pi/2-A)
sin(π/2-A)=cos(A)
​Go Tan (pi/2-A)
tan(π/2-A)=cot(A)
​Go Sin (3pi/2-A)
sin(3π/2-A)=(-cos(A))

How to Evaluate Tan (3pi/2-A)?

Tan (3pi/2-A) evaluator uses Tan (3pi/2-A) = cot(Angle A of Trigonometry) to evaluate the Tan (3pi/2-A), The Tan (3pi/2-A) formula is defined as the value of the trigonometric tangent function of the difference between 3*pi/2(270 degrees) and the given angle A, which shows shifting of angle -A by 3*pi/2. Tan (3pi/2-A) is denoted by tan(3π/2-A) symbol.

How to evaluate Tan (3pi/2-A) using this online evaluator? To use this online evaluator for Tan (3pi/2-A), enter Angle A of Trigonometry (A) and hit the calculate button.

FAQs on Tan (3pi/2-A)

What is the formula to find Tan (3pi/2-A)?
The formula of Tan (3pi/2-A) is expressed as Tan (3pi/2-A) = cot(Angle A of Trigonometry). Here is an example- 2.747477 = cot(0.3490658503988).
How to calculate Tan (3pi/2-A)?
With Angle A of Trigonometry (A) we can find Tan (3pi/2-A) using the formula - Tan (3pi/2-A) = cot(Angle A of Trigonometry). This formula also uses Cotangent (cot) function(s).
Copied!