Sin A + Sin B Formula

Fx Copy
LaTeX Copy
Sin A + Sin B is the sum of values of trigonometric sine functions of angle A and angle B. Check FAQs
sin A + sin B=2sin(A+B2)cos(A-B2)
sin A + sin B - Sin A + Sin B?A - Angle A of Trigonometry?B - Angle B of Trigonometry?

Sin A + Sin B Example

With values
With units
Only example

Here is how the Sin A + Sin B equation looks like with Values.

Here is how the Sin A + Sin B equation looks like with Units.

Here is how the Sin A + Sin B equation looks like.

0.842Edit=2sin(20Edit+30Edit2)cos(20Edit-30Edit2)
You are here -
HomeIcon Home » Category Math » Category Trigonometry and Inverse Trigonometry » Category Trigonometry » fx Sin A + Sin B

Sin A + Sin B Solution

Follow our step by step solution on how to calculate Sin A + Sin B?

FIRST Step Consider the formula
sin A + sin B=2sin(A+B2)cos(A-B2)
Next Step Substitute values of Variables
sin A + sin B=2sin(20°+30°2)cos(20°-30°2)
Next Step Convert Units
sin A + sin B=2sin(0.3491rad+0.5236rad2)cos(0.3491rad-0.5236rad2)
Next Step Prepare to Evaluate
sin A + sin B=2sin(0.3491+0.52362)cos(0.3491-0.52362)
Next Step Evaluate
sin A + sin B=0.842020143325521
LAST Step Rounding Answer
sin A + sin B=0.842

Sin A + Sin B Formula Elements

Variables
Functions
Sin A + Sin B
Sin A + Sin B is the sum of values of trigonometric sine functions of angle A and angle B.
Symbol: sin A + sin B
Measurement: NAUnit: Unitless
Note: Value should be between -2.01 to 2.01.
Angle A of Trigonometry
Angle A of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: A
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
Angle B of Trigonometry
Angle B of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: B
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
sin
Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
Syntax: sin(Angle)
cos
Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
Syntax: cos(Angle)

Other formulas in Sum to Product Trigonometry Identities category

​Go Sin A - Sin B
sin A _ sin B=2cos(A+B2)sin(A-B2)
​Go Cos A - Cos B
cos A _ cos B=-2sin(A+B2)sin(A-B2)
​Go Cos A + Cos B
cos A + cos B=2cos(A+B2)cos(A-B2)
​Go Tan A + Tan B
Tan A + Tan B=sin(A+B)cos Acos B

How to Evaluate Sin A + Sin B?

Sin A + Sin B evaluator uses Sin A + Sin B = 2*sin((Angle A of Trigonometry+Angle B of Trigonometry)/2)*cos((Angle A of Trigonometry-Angle B of Trigonometry)/2) to evaluate the Sin A + Sin B, The Sin A + Sin B formula is defined as the sum of values of trigonometric sine functions of angle A and angle B. Sin A + Sin B is denoted by sin A + sin B symbol.

How to evaluate Sin A + Sin B using this online evaluator? To use this online evaluator for Sin A + Sin B, enter Angle A of Trigonometry (A) & Angle B of Trigonometry (B) and hit the calculate button.

FAQs on Sin A + Sin B

What is the formula to find Sin A + Sin B?
The formula of Sin A + Sin B is expressed as Sin A + Sin B = 2*sin((Angle A of Trigonometry+Angle B of Trigonometry)/2)*cos((Angle A of Trigonometry-Angle B of Trigonometry)/2). Here is an example- 0.84202 = 2*sin((0.3490658503988+0.5235987755982)/2)*cos((0.3490658503988-0.5235987755982)/2).
How to calculate Sin A + Sin B?
With Angle A of Trigonometry (A) & Angle B of Trigonometry (B) we can find Sin A + Sin B using the formula - Sin A + Sin B = 2*sin((Angle A of Trigonometry+Angle B of Trigonometry)/2)*cos((Angle A of Trigonometry-Angle B of Trigonometry)/2). This formula also uses Sine (sin), Cosine (cos) function(s).
Copied!