Sin A - Sin B Formula

Fx Copy
LaTeX Copy
Sin A - Sin B is the difference between the values of trigonometric sine functions of angle A and angle B. Check FAQs
sin A _ sin B=2cos(A+B2)sin(A-B2)
sin A _ sin B - Sin A - Sin B?A - Angle A of Trigonometry?B - Angle B of Trigonometry?

Sin A - Sin B Example

With values
With units
Only example

Here is how the Sin A - Sin B equation looks like with Values.

Here is how the Sin A - Sin B equation looks like with Units.

Here is how the Sin A - Sin B equation looks like.

-0.158Edit=2cos(20Edit+30Edit2)sin(20Edit-30Edit2)
You are here -
HomeIcon Home » Category Math » Category Trigonometry and Inverse Trigonometry » Category Trigonometry » fx Sin A - Sin B

Sin A - Sin B Solution

Follow our step by step solution on how to calculate Sin A - Sin B?

FIRST Step Consider the formula
sin A _ sin B=2cos(A+B2)sin(A-B2)
Next Step Substitute values of Variables
sin A _ sin B=2cos(20°+30°2)sin(20°-30°2)
Next Step Convert Units
sin A _ sin B=2cos(0.3491rad+0.5236rad2)sin(0.3491rad-0.5236rad2)
Next Step Prepare to Evaluate
sin A _ sin B=2cos(0.3491+0.52362)sin(0.3491-0.52362)
Next Step Evaluate
sin A _ sin B=-0.157979856674308
LAST Step Rounding Answer
sin A _ sin B=-0.158

Sin A - Sin B Formula Elements

Variables
Functions
Sin A - Sin B
Sin A - Sin B is the difference between the values of trigonometric sine functions of angle A and angle B.
Symbol: sin A _ sin B
Measurement: NAUnit: Unitless
Note: Value should be between -2.01 to 2.01.
Angle A of Trigonometry
Angle A of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: A
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
Angle B of Trigonometry
Angle B of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: B
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
sin
Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
Syntax: sin(Angle)
cos
Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
Syntax: cos(Angle)

Other formulas in Sum to Product Trigonometry Identities category

​Go Cos A - Cos B
cos A _ cos B=-2sin(A+B2)sin(A-B2)
​Go Sin A + Sin B
sin A + sin B=2sin(A+B2)cos(A-B2)
​Go Cos A + Cos B
cos A + cos B=2cos(A+B2)cos(A-B2)
​Go Tan A + Tan B
Tan A + Tan B=sin(A+B)cos Acos B

How to Evaluate Sin A - Sin B?

Sin A - Sin B evaluator uses Sin A - Sin B = 2*cos((Angle A of Trigonometry+Angle B of Trigonometry)/2)*sin((Angle A of Trigonometry-Angle B of Trigonometry)/2) to evaluate the Sin A - Sin B, The Sin A - Sin B formula is defined as the difference between values of trigonometric sine functions of angle A and angle B. Sin A - Sin B is denoted by sin A _ sin B symbol.

How to evaluate Sin A - Sin B using this online evaluator? To use this online evaluator for Sin A - Sin B, enter Angle A of Trigonometry (A) & Angle B of Trigonometry (B) and hit the calculate button.

FAQs on Sin A - Sin B

What is the formula to find Sin A - Sin B?
The formula of Sin A - Sin B is expressed as Sin A - Sin B = 2*cos((Angle A of Trigonometry+Angle B of Trigonometry)/2)*sin((Angle A of Trigonometry-Angle B of Trigonometry)/2). Here is an example- -0.15798 = 2*cos((0.3490658503988+0.5235987755982)/2)*sin((0.3490658503988-0.5235987755982)/2).
How to calculate Sin A - Sin B?
With Angle A of Trigonometry (A) & Angle B of Trigonometry (B) we can find Sin A - Sin B using the formula - Sin A - Sin B = 2*cos((Angle A of Trigonometry+Angle B of Trigonometry)/2)*sin((Angle A of Trigonometry-Angle B of Trigonometry)/2). This formula also uses Sine (sin), Cosine (cos) function(s).
Copied!