Sin A Sin B Formula

Fx Copy
LaTeX Copy
Sin A Sin B is the product of values of trigonometric sine functions of angle A and angle B. Check FAQs
sin A sin B=cos(A-B)-cos(A+B)2
sin A sin B - Sin A Sin B?A - Angle A of Trigonometry?B - Angle B of Trigonometry?

Sin A Sin B Example

With values
With units
Only example

Here is how the Sin A Sin B equation looks like with Values.

Here is how the Sin A Sin B equation looks like with Units.

Here is how the Sin A Sin B equation looks like.

0.171Edit=cos(20Edit-30Edit)-cos(20Edit+30Edit)2
You are here -
HomeIcon Home » Category Math » Category Trigonometry and Inverse Trigonometry » Category Trigonometry » fx Sin A Sin B

Sin A Sin B Solution

Follow our step by step solution on how to calculate Sin A Sin B?

FIRST Step Consider the formula
sin A sin B=cos(A-B)-cos(A+B)2
Next Step Substitute values of Variables
sin A sin B=cos(20°-30°)-cos(20°+30°)2
Next Step Convert Units
sin A sin B=cos(0.3491rad-0.5236rad)-cos(0.3491rad+0.5236rad)2
Next Step Prepare to Evaluate
sin A sin B=cos(0.3491-0.5236)-cos(0.3491+0.5236)2
Next Step Evaluate
sin A sin B=0.171010071662774
LAST Step Rounding Answer
sin A sin B=0.171

Sin A Sin B Formula Elements

Variables
Functions
Sin A Sin B
Sin A Sin B is the product of values of trigonometric sine functions of angle A and angle B.
Symbol: sin A sin B
Measurement: NAUnit: Unitless
Note: Value should be between -1.01 to 1.01.
Angle A of Trigonometry
Angle A of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: A
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
Angle B of Trigonometry
Angle B of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: B
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
cos
Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
Syntax: cos(Angle)

Other formulas in Product to Sum Trigonometry Identities category

​Go Cos A Cos B
cos A cos B=cos(A+B)+cos(A-B)2
​Go Sin A Cos B
sin A cos B=sin(A+B)+sin(A-B)2
​Go Cos A Sin B
cos A sin B=sin(A+B)-sin(A-B)2

How to Evaluate Sin A Sin B?

Sin A Sin B evaluator uses Sin A Sin B = (cos(Angle A of Trigonometry-Angle B of Trigonometry)-cos(Angle A of Trigonometry+Angle B of Trigonometry))/2 to evaluate the Sin A Sin B, The Sin A Sin B formula is defined as the product of values of trigonometric sine functions of angle A and angle B. Sin A Sin B is denoted by sin A sin B symbol.

How to evaluate Sin A Sin B using this online evaluator? To use this online evaluator for Sin A Sin B, enter Angle A of Trigonometry (A) & Angle B of Trigonometry (B) and hit the calculate button.

FAQs on Sin A Sin B

What is the formula to find Sin A Sin B?
The formula of Sin A Sin B is expressed as Sin A Sin B = (cos(Angle A of Trigonometry-Angle B of Trigonometry)-cos(Angle A of Trigonometry+Angle B of Trigonometry))/2. Here is an example- 0.17101 = (cos(0.3490658503988-0.5235987755982)-cos(0.3490658503988+0.5235987755982))/2.
How to calculate Sin A Sin B?
With Angle A of Trigonometry (A) & Angle B of Trigonometry (B) we can find Sin A Sin B using the formula - Sin A Sin B = (cos(Angle A of Trigonometry-Angle B of Trigonometry)-cos(Angle A of Trigonometry+Angle B of Trigonometry))/2. This formula also uses Cosine (cos) function(s).
Copied!