Sin A Cos B Formula

Fx Copy
LaTeX Copy
Sin A Cos B is the product of values of the trigonometric sine function of angle A and trigonometric cosine of angle B. Check FAQs
sin A cos B=sin(A+B)+sin(A-B)2
sin A cos B - Sin A Cos B?A - Angle A of Trigonometry?B - Angle B of Trigonometry?

Sin A Cos B Example

With values
With units
Only example

Here is how the Sin A Cos B equation looks like with Values.

Here is how the Sin A Cos B equation looks like with Units.

Here is how the Sin A Cos B equation looks like.

0.2962Edit=sin(20Edit+30Edit)+sin(20Edit-30Edit)2
You are here -
HomeIcon Home » Category Math » Category Trigonometry and Inverse Trigonometry » Category Trigonometry » fx Sin A Cos B

Sin A Cos B Solution

Follow our step by step solution on how to calculate Sin A Cos B?

FIRST Step Consider the formula
sin A cos B=sin(A+B)+sin(A-B)2
Next Step Substitute values of Variables
sin A cos B=sin(20°+30°)+sin(20°-30°)2
Next Step Convert Units
sin A cos B=sin(0.3491rad+0.5236rad)+sin(0.3491rad-0.5236rad)2
Next Step Prepare to Evaluate
sin A cos B=sin(0.3491+0.5236)+sin(0.3491-0.5236)2
Next Step Evaluate
sin A cos B=0.296198132725987
LAST Step Rounding Answer
sin A cos B=0.2962

Sin A Cos B Formula Elements

Variables
Functions
Sin A Cos B
Sin A Cos B is the product of values of the trigonometric sine function of angle A and trigonometric cosine of angle B.
Symbol: sin A cos B
Measurement: NAUnit: Unitless
Note: Value should be between -1.01 to 1.01.
Angle A of Trigonometry
Angle A of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: A
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
Angle B of Trigonometry
Angle B of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: B
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
sin
Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
Syntax: sin(Angle)

Other formulas in Product to Sum Trigonometry Identities category

​Go Cos A Cos B
cos A cos B=cos(A+B)+cos(A-B)2
​Go Cos A Sin B
cos A sin B=sin(A+B)-sin(A-B)2
​Go Sin A Sin B
sin A sin B=cos(A-B)-cos(A+B)2

How to Evaluate Sin A Cos B?

Sin A Cos B evaluator uses Sin A Cos B = (sin(Angle A of Trigonometry+Angle B of Trigonometry)+sin(Angle A of Trigonometry-Angle B of Trigonometry))/2 to evaluate the Sin A Cos B, The Sin A Cos B formula is defined as the product of values of the trigonometric sine function of angle A and the trigonometric cosine function of angle B. Sin A Cos B is denoted by sin A cos B symbol.

How to evaluate Sin A Cos B using this online evaluator? To use this online evaluator for Sin A Cos B, enter Angle A of Trigonometry (A) & Angle B of Trigonometry (B) and hit the calculate button.

FAQs on Sin A Cos B

What is the formula to find Sin A Cos B?
The formula of Sin A Cos B is expressed as Sin A Cos B = (sin(Angle A of Trigonometry+Angle B of Trigonometry)+sin(Angle A of Trigonometry-Angle B of Trigonometry))/2. Here is an example- 0.296198 = (sin(0.3490658503988+0.5235987755982)+sin(0.3490658503988-0.5235987755982))/2.
How to calculate Sin A Cos B?
With Angle A of Trigonometry (A) & Angle B of Trigonometry (B) we can find Sin A Cos B using the formula - Sin A Cos B = (sin(Angle A of Trigonometry+Angle B of Trigonometry)+sin(Angle A of Trigonometry-Angle B of Trigonometry))/2. This formula also uses Sine (sin) function(s).
Copied!