Sin (3pi/2-A) Formula

Fx Copy
LaTeX Copy
Sin (3pi/2-A) is the value of the trigonometric sine function of the difference between 3*pi/2(270 degrees) and the given angle A, which shows shifting of angle -A by 3*pi/2. Check FAQs
sin(3π/2-A)=(-cos(A))
sin(3π/2-A) - Sin (3pi/2-A)?A - Angle A of Trigonometry?

Sin (3pi/2-A) Example

With values
With units
Only example

Here is how the Sin (3pi/2-A) equation looks like with Values.

Here is how the Sin (3pi/2-A) equation looks like with Units.

Here is how the Sin (3pi/2-A) equation looks like.

-0.9397Edit=(-cos(20Edit))
You are here -
HomeIcon Home » Category Math » Category Trigonometry and Inverse Trigonometry » Category Trigonometry » fx Sin (3pi/2-A)

Sin (3pi/2-A) Solution

Follow our step by step solution on how to calculate Sin (3pi/2-A)?

FIRST Step Consider the formula
sin(3π/2-A)=(-cos(A))
Next Step Substitute values of Variables
sin(3π/2-A)=(-cos(20°))
Next Step Convert Units
sin(3π/2-A)=(-cos(0.3491rad))
Next Step Prepare to Evaluate
sin(3π/2-A)=(-cos(0.3491))
Next Step Evaluate
sin(3π/2-A)=-0.939692620785931
LAST Step Rounding Answer
sin(3π/2-A)=-0.9397

Sin (3pi/2-A) Formula Elements

Variables
Functions
Sin (3pi/2-A)
Sin (3pi/2-A) is the value of the trigonometric sine function of the difference between 3*pi/2(270 degrees) and the given angle A, which shows shifting of angle -A by 3*pi/2.
Symbol: sin(3π/2-A)
Measurement: NAUnit: Unitless
Note: Value should be between -1.01 to 1.01.
Angle A of Trigonometry
Angle A of Trigonometry is the value of the variable angle used to calculate Trigonometric Identities.
Symbol: A
Measurement: AngleUnit: °
Note: Value should be between 0 to 90.
cos
Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
Syntax: cos(Angle)

Other formulas in Periodicity or Cofunction Identities category

​Go Cos (pi/2-A)
cos(π/2-A)=sin(A)
​Go Sin (pi/2-A)
sin(π/2-A)=cos(A)
​Go Tan (pi/2-A)
tan(π/2-A)=cot(A)
​Go Tan (3pi/2-A)
tan(3π/2-A)=cot(A)

How to Evaluate Sin (3pi/2-A)?

Sin (3pi/2-A) evaluator uses Sin (3pi/2-A) = (-cos(Angle A of Trigonometry)) to evaluate the Sin (3pi/2-A), The Sin (3pi/2-A) formula is defined as the value of the trigonometric sine function of the difference between 3*pi/2(270 degrees) and the given angle A, which shows shifting of angle -A by 3*pi/2. Sin (3pi/2-A) is denoted by sin(3π/2-A) symbol.

How to evaluate Sin (3pi/2-A) using this online evaluator? To use this online evaluator for Sin (3pi/2-A), enter Angle A of Trigonometry (A) and hit the calculate button.

FAQs on Sin (3pi/2-A)

What is the formula to find Sin (3pi/2-A)?
The formula of Sin (3pi/2-A) is expressed as Sin (3pi/2-A) = (-cos(Angle A of Trigonometry)). Here is an example- -0.939693 = (-cos(0.3490658503988)).
How to calculate Sin (3pi/2-A)?
With Angle A of Trigonometry (A) we can find Sin (3pi/2-A) using the formula - Sin (3pi/2-A) = (-cos(Angle A of Trigonometry)). This formula also uses Cosine (cos) function(s).
Copied!