Fx Copy
LaTeX Copy
Semi Conjugate Axis of Hyperbola is half of the tangent from any of the vertices of the Hyperbola and chord to the circle passing through the foci and centered at the center of the Hyperbola. Check FAQs
b=LpL2-(2p)2
b - Semi Conjugate Axis of Hyperbola?L - Latus Rectum of Hyperbola?p - Focal Parameter of Hyperbola?

Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter Example

With values
With units
Only example

Here is how the Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter equation looks like with Values.

Here is how the Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter equation looks like with Units.

Here is how the Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter equation looks like.

11.8235Edit=60Edit11Edit60Edit2-(211Edit)2
You are here -

Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter Solution

Follow our step by step solution on how to calculate Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter?

FIRST Step Consider the formula
b=LpL2-(2p)2
Next Step Substitute values of Variables
b=60m11m60m2-(211m)2
Next Step Prepare to Evaluate
b=6011602-(211)2
Next Step Evaluate
b=11.8234770043503m
LAST Step Rounding Answer
b=11.8235m

Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter Formula Elements

Variables
Functions
Semi Conjugate Axis of Hyperbola
Semi Conjugate Axis of Hyperbola is half of the tangent from any of the vertices of the Hyperbola and chord to the circle passing through the foci and centered at the center of the Hyperbola.
Symbol: b
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Latus Rectum of Hyperbola
Latus Rectum of Hyperbola is the line segment passing through any of the foci and perpendicular to the transverse axis whose ends are on the Hyperbola.
Symbol: L
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Focal Parameter of Hyperbola
Focal Parameter of Hyperbola is the shortest distance between any of the foci and directrix of the corresponding wing of the Hyperbola.
Symbol: p
Measurement: LengthUnit: m
Note: Value should be greater than 0.
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Semi Conjugate Axis of Hyperbola

​Go Semi Conjugate Axis of Hyperbola given Eccentricity
b=ae2-1
​Go Semi Conjugate Axis of Hyperbola given Latus Rectum and Eccentricity
b=(L)2e2-12
​Go Semi Conjugate Axis of Hyperbola given Eccentricity and Linear Eccentricity
b=c1-1e2
​Go Semi Conjugate Axis of Hyperbola
b=2b2

Other formulas in Conjugate Axis of Hyperbola category

​Go Conjugate Axis of Hyperbola
2b=2b
​Go Conjugate Axis of Hyperbola given Latus Rectum and Eccentricity
2b=(L)2e2-1
​Go Conjugate Axis of Hyperbola given Eccentricity and Linear Eccentricity
2b=2c1-1e2

How to Evaluate Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter?

Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter evaluator uses Semi Conjugate Axis of Hyperbola = (Latus Rectum of Hyperbola*Focal Parameter of Hyperbola)/sqrt(Latus Rectum of Hyperbola^2-(2*Focal Parameter of Hyperbola)^2) to evaluate the Semi Conjugate Axis of Hyperbola, The Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter formula is defined as half of the tangent from any of the vertices of the Hyperbola and chord to the circle passing through the foci and centered at the center of the Hyperbola, and is calculated using the latus rectum and the focal parameter of the Hyperbola. Semi Conjugate Axis of Hyperbola is denoted by b symbol.

How to evaluate Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter using this online evaluator? To use this online evaluator for Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter, enter Latus Rectum of Hyperbola (L) & Focal Parameter of Hyperbola (p) and hit the calculate button.

FAQs on Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter

What is the formula to find Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter?
The formula of Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter is expressed as Semi Conjugate Axis of Hyperbola = (Latus Rectum of Hyperbola*Focal Parameter of Hyperbola)/sqrt(Latus Rectum of Hyperbola^2-(2*Focal Parameter of Hyperbola)^2). Here is an example- 11.82348 = (60*11)/sqrt(60^2-(2*11)^2).
How to calculate Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter?
With Latus Rectum of Hyperbola (L) & Focal Parameter of Hyperbola (p) we can find Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter using the formula - Semi Conjugate Axis of Hyperbola = (Latus Rectum of Hyperbola*Focal Parameter of Hyperbola)/sqrt(Latus Rectum of Hyperbola^2-(2*Focal Parameter of Hyperbola)^2). This formula also uses Square Root (sqrt) function(s).
What are the other ways to Calculate Semi Conjugate Axis of Hyperbola?
Here are the different ways to Calculate Semi Conjugate Axis of Hyperbola-
  • Semi Conjugate Axis of Hyperbola=Semi Transverse Axis of Hyperbola*sqrt(Eccentricity of Hyperbola^2-1)OpenImg
  • Semi Conjugate Axis of Hyperbola=sqrt((Latus Rectum of Hyperbola)^2/(Eccentricity of Hyperbola^2-1))/2OpenImg
  • Semi Conjugate Axis of Hyperbola=Linear Eccentricity of Hyperbola*sqrt(1-1/Eccentricity of Hyperbola^2)OpenImg
Can the Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter be negative?
No, the Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter, measured in Length cannot be negative.
Which unit is used to measure Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter?
Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter is usually measured using the Meter[m] for Length. Millimeter[m], Kilometer[m], Decimeter[m] are the few other units in which Semi Conjugate Axis of Hyperbola given Latus Rectum and Focal Parameter can be measured.
Copied!