Fx Copy
LaTeX Copy
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas. Check FAQs
aPR=(([R](TcTr)(Vm,rVm,c)-bPR)-(PrPc))((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2)α
aPR - Peng–Robinson Parameter a?Tc - Critical Temperature?Tr - Reduced Temperature?Vm,r - Reduced Molar Volume?Vm,c - Critical Molar Volume?bPR - Peng–Robinson Parameter b?Pr - Reduced Pressure?Pc - Critical Pressure?α - α-function?[R] - Universal gas constant?

Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters Example

With values
With units
Only example

Here is how the Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters equation looks like with Values.

Here is how the Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters equation looks like with Units.

Here is how the Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters equation looks like.

3.5E+6Edit=((8.3145(647Edit10Edit)(11.2Edit11.5Edit)-0.12Edit)-(3.7E-5Edit218Edit))((11.2Edit11.5Edit)2)+(20.12Edit(11.2Edit11.5Edit))-(0.12Edit2)2Edit
You are here -

Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters Solution

Follow our step by step solution on how to calculate Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters?

FIRST Step Consider the formula
aPR=(([R](TcTr)(Vm,rVm,c)-bPR)-(PrPc))((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2)α
Next Step Substitute values of Variables
aPR=(([R](647K10)(11.211.5m³/mol)-0.12)-(3.7E-5218Pa))((11.211.5m³/mol)2)+(20.12(11.211.5m³/mol))-(0.122)2
Next Step Substitute values of Constants
aPR=((8.3145(647K10)(11.211.5m³/mol)-0.12)-(3.7E-5218Pa))((11.211.5m³/mol)2)+(20.12(11.211.5m³/mol))-(0.122)2
Next Step Prepare to Evaluate
aPR=((8.3145(64710)(11.211.5)-0.12)-(3.7E-5218))((11.211.5)2)+(20.12(11.211.5))-(0.122)2
Next Step Evaluate
aPR=3473992.97633715
LAST Step Rounding Answer
aPR=3.5E+6

Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters Formula Elements

Variables
Constants
Peng–Robinson Parameter a
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: aPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Critical Temperature
Critical Temperature is the highest temperature at which the substance can exist as a liquid. At this phase boundaries vanish, and the substance can exist both as a liquid and vapor.
Symbol: Tc
Measurement: TemperatureUnit: K
Note: Value should be greater than 0.
Reduced Temperature
Reduced Temperature is the ratio of the actual temperature of the fluid to its critical temperature. It is dimensionless.
Symbol: Tr
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.
Reduced Molar Volume
Reduced Molar Volume of a fluid is computed from the ideal gas law at the substance's critical pressure and temperature per mole.
Symbol: Vm,r
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Critical Molar Volume
Critical Molar Volume is the volume occupied by gas at critical temperature and pressure per mole.
Symbol: Vm,c
Measurement: Molar Magnetic SusceptibilityUnit: m³/mol
Note: Value can be positive or negative.
Peng–Robinson Parameter b
Peng–Robinson parameter b is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: bPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Reduced Pressure
Reduced Pressure is the ratio of the actual pressure of the fluid to its critical pressure. It is dimensionless.
Symbol: Pr
Measurement: NAUnit: Unitless
Note: Value should be between 0 to 1.
Critical Pressure
Critical Pressure is the minimum pressure required to liquify a substance at the critical temperature.
Symbol: Pc
Measurement: PressureUnit: Pa
Note: Value should be greater than 0.
α-function
α-function is a function of temperature and the acentric factor.
Symbol: α
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Universal gas constant
Universal gas constant is a fundamental physical constant that appears in the ideal gas law, relating the pressure, volume, and temperature of an ideal gas.
Symbol: [R]
Value: 8.31446261815324

Other Formulas to find Peng–Robinson Parameter a

​Go Peng Robinson Parameter a, of Real Gas given Critical Parameters
aPR=0.45724([R]2)Tc2Pc
​Go Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters
aPR=0.45724([R]2)(TTr)2pPr

Other formulas in Peng Robinson Parameter category

​Go Peng Robinson Parameter b of Real Gas given Reduced and Actual Parameters
bPR=0.07780[R]TTrpPr
​Go Peng Robinson Parameter b of Real Gas given Critical Parameters
bpara=0.07780[R]TcPc

How to Evaluate Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters?

Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters evaluator uses Peng–Robinson Parameter a = ((([R]*(Critical Temperature*Reduced Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b))-(Reduced Pressure*Critical Pressure))*(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2))/α-function to evaluate the Peng–Robinson Parameter a, The Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters formula is defined as an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas. Peng–Robinson Parameter a is denoted by aPR symbol.

How to evaluate Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters using this online evaluator? To use this online evaluator for Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters, enter Critical Temperature (Tc), Reduced Temperature (Tr), Reduced Molar Volume (Vm,r), Critical Molar Volume (Vm,c), Peng–Robinson Parameter b (bPR), Reduced Pressure (Pr), Critical Pressure (Pc) & α-function (α) and hit the calculate button.

FAQs on Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters

What is the formula to find Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters?
The formula of Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters is expressed as Peng–Robinson Parameter a = ((([R]*(Critical Temperature*Reduced Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b))-(Reduced Pressure*Critical Pressure))*(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2))/α-function. Here is an example- 3.5E+6 = ((([R]*(647*10))/((11.2*11.5)-0.12))-(3.675E-05*218))*(((11.2*11.5)^2)+(2*0.12*(11.2*11.5))-(0.12^2))/2.
How to calculate Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters?
With Critical Temperature (Tc), Reduced Temperature (Tr), Reduced Molar Volume (Vm,r), Critical Molar Volume (Vm,c), Peng–Robinson Parameter b (bPR), Reduced Pressure (Pr), Critical Pressure (Pc) & α-function (α) we can find Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters using the formula - Peng–Robinson Parameter a = ((([R]*(Critical Temperature*Reduced Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b))-(Reduced Pressure*Critical Pressure))*(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2))/α-function. This formula also uses Universal gas constant .
What are the other ways to Calculate Peng–Robinson Parameter a?
Here are the different ways to Calculate Peng–Robinson Parameter a-
  • Peng–Robinson Parameter a=0.45724*([R]^2)*(Critical Temperature^2)/Critical PressureOpenImg
  • Peng–Robinson Parameter a=0.45724*([R]^2)*((Temperature/Reduced Temperature)^2)/(Pressure/Reduced Pressure)OpenImg
  • Peng–Robinson Parameter a=((([R]*Temperature)/(Molar Volume-Peng–Robinson Parameter b))-Pressure)*((Molar Volume^2)+(2*Peng–Robinson Parameter b*Molar Volume)-(Peng–Robinson Parameter b^2))/α-functionOpenImg
Copied!