Fx Copy
LaTeX Copy
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas. Check FAQs
aPR=0.45724([R]2)(TTr)2pPr
aPR - Peng–Robinson Parameter a?T - Temperature?Tr - Reduced Temperature?p - Pressure?Pr - Reduced Pressure?[R] - Universal gas constant?

Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters Example

With values
With units
Only example

Here is how the Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters equation looks like with Values.

Here is how the Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters equation looks like with Units.

Here is how the Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters equation looks like.

0.0001Edit=0.45724(8.31452)(85Edit10Edit)2800Edit3.7E-5Edit
You are here -
HomeIcon Home » Category Chemistry » Category Kinetic Theory of Gases » Category Real Gas » fx Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters

Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters Solution

Follow our step by step solution on how to calculate Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters?

FIRST Step Consider the formula
aPR=0.45724([R]2)(TTr)2pPr
Next Step Substitute values of Variables
aPR=0.45724([R]2)(85K10)2800Pa3.7E-5
Next Step Substitute values of Constants
aPR=0.45724(8.31452)(85K10)2800Pa3.7E-5
Next Step Prepare to Evaluate
aPR=0.45724(8.31452)(8510)28003.7E-5
Next Step Evaluate
aPR=0.000104910219107061
LAST Step Rounding Answer
aPR=0.0001

Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters Formula Elements

Variables
Constants
Peng–Robinson Parameter a
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: aPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Temperature
Temperature is the degree or intensity of heat present in a substance or object.
Symbol: T
Measurement: TemperatureUnit: K
Note: Value can be positive or negative.
Reduced Temperature
Reduced Temperature is the ratio of the actual temperature of the fluid to its critical temperature. It is dimensionless.
Symbol: Tr
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.
Pressure
Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed.
Symbol: p
Measurement: PressureUnit: Pa
Note: Value can be positive or negative.
Reduced Pressure
Reduced Pressure is the ratio of the actual pressure of the fluid to its critical pressure. It is dimensionless.
Symbol: Pr
Measurement: NAUnit: Unitless
Note: Value should be between 0 to 1.
Universal gas constant
Universal gas constant is a fundamental physical constant that appears in the ideal gas law, relating the pressure, volume, and temperature of an ideal gas.
Symbol: [R]
Value: 8.31446261815324

Other Formulas to find Peng–Robinson Parameter a

​Go Peng Robinson Parameter a, of Real Gas given Critical Parameters
aPR=0.45724([R]2)Tc2Pc
​Go Peng Robinson Parameter a, using Peng Robinson Equation
aPR=(([R]TVm-bPR)-p)(Vm2)+(2bPRVm)-(bPR2)α
​Go Peng Robinson Parameter a, using Peng Robinson Equation given Reduced and Critical Parameters
aPR=(([R](TcTr)(Vm,rVm,c)-bPR)-(PrPc))((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2)α

Other formulas in Peng Robinson Parameter category

​Go Peng Robinson Parameter b of Real Gas given Reduced and Actual Parameters
bPR=0.07780[R]TTrpPr
​Go Peng Robinson Parameter b of Real Gas given Critical Parameters
bpara=0.07780[R]TcPc

How to Evaluate Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters?

Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters evaluator uses Peng–Robinson Parameter a = 0.45724*([R]^2)*((Temperature/Reduced Temperature)^2)/(Pressure/Reduced Pressure) to evaluate the Peng–Robinson Parameter a, The Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters formula is defined as an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas. Peng–Robinson Parameter a is denoted by aPR symbol.

How to evaluate Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters using this online evaluator? To use this online evaluator for Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters, enter Temperature (T), Reduced Temperature (Tr), Pressure (p) & Reduced Pressure (Pr) and hit the calculate button.

FAQs on Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters

What is the formula to find Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters?
The formula of Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters is expressed as Peng–Robinson Parameter a = 0.45724*([R]^2)*((Temperature/Reduced Temperature)^2)/(Pressure/Reduced Pressure). Here is an example- 0.000105 = 0.45724*([R]^2)*((85/10)^2)/(800/3.675E-05).
How to calculate Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters?
With Temperature (T), Reduced Temperature (Tr), Pressure (p) & Reduced Pressure (Pr) we can find Peng Robinson parameter a, of Real Gas given Reduced and Actual Parameters using the formula - Peng–Robinson Parameter a = 0.45724*([R]^2)*((Temperature/Reduced Temperature)^2)/(Pressure/Reduced Pressure). This formula also uses Universal gas constant .
What are the other ways to Calculate Peng–Robinson Parameter a?
Here are the different ways to Calculate Peng–Robinson Parameter a-
  • Peng–Robinson Parameter a=0.45724*([R]^2)*(Critical Temperature^2)/Critical PressureOpenImg
  • Peng–Robinson Parameter a=((([R]*Temperature)/(Molar Volume-Peng–Robinson Parameter b))-Pressure)*((Molar Volume^2)+(2*Peng–Robinson Parameter b*Molar Volume)-(Peng–Robinson Parameter b^2))/α-functionOpenImg
  • Peng–Robinson Parameter a=((([R]*(Critical Temperature*Reduced Temperature))/((Reduced Molar Volume*Critical Molar Volume)-Peng–Robinson Parameter b))-(Reduced Pressure*Critical Pressure))*(((Reduced Molar Volume*Critical Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Reduced Molar Volume*Critical Molar Volume))-(Peng–Robinson Parameter b^2))/α-functionOpenImg
Copied!