Fx Copy
LaTeX Copy
α-function is a function of temperature and the acentric factor. Check FAQs
α=(([R](TcTr)(Vm,cVm,r)-bPR)-(PcPr))((Vm,cVm,r)2)+(2bPR(Vm,cVm,r))-(bPR2)aPR
α - α-function?Tc - Critical Temperature?Tr - Reduced Temperature?Vm,c - Critical Molar Volume?Vm,r - Reduced Molar Volume?bPR - Peng–Robinson Parameter b?Pc - Critical Pressure?Pr - Reduced Pressure?aPR - Peng–Robinson Parameter a?[R] - Universal gas constant?

Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters Example

With values
With units
Only example

Here is how the Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters equation looks like with Values.

Here is how the Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters equation looks like with Units.

Here is how the Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters equation looks like.

6.9E+7Edit=((8.3145(647Edit10Edit)(11.5Edit11.2Edit)-0.12Edit)-(218Edit3.7E-5Edit))((11.5Edit11.2Edit)2)+(20.12Edit(11.5Edit11.2Edit))-(0.12Edit2)0.1Edit
You are here -

Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters Solution

Follow our step by step solution on how to calculate Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters?

FIRST Step Consider the formula
α=(([R](TcTr)(Vm,cVm,r)-bPR)-(PcPr))((Vm,cVm,r)2)+(2bPR(Vm,cVm,r))-(bPR2)aPR
Next Step Substitute values of Variables
α=(([R](647K10)(11.5m³/mol11.2)-0.12)-(218Pa3.7E-5))((11.5m³/mol11.2)2)+(20.12(11.5m³/mol11.2))-(0.122)0.1
Next Step Substitute values of Constants
α=((8.3145(647K10)(11.5m³/mol11.2)-0.12)-(218Pa3.7E-5))((11.5m³/mol11.2)2)+(20.12(11.5m³/mol11.2))-(0.122)0.1
Next Step Prepare to Evaluate
α=((8.3145(64710)(11.511.2)-0.12)-(2183.7E-5))((11.511.2)2)+(20.12(11.511.2))-(0.122)0.1
Next Step Evaluate
α=69479859.5267429
LAST Step Rounding Answer
α=6.9E+7

Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters Formula Elements

Variables
Constants
α-function
α-function is a function of temperature and the acentric factor.
Symbol: α
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Critical Temperature
Critical Temperature is the highest temperature at which the substance can exist as a liquid. At this phase boundaries vanish, and the substance can exist both as a liquid and vapor.
Symbol: Tc
Measurement: TemperatureUnit: K
Note: Value should be greater than 0.
Reduced Temperature
Reduced Temperature is the ratio of the actual temperature of the fluid to its critical temperature. It is dimensionless.
Symbol: Tr
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.
Critical Molar Volume
Critical Molar Volume is the volume occupied by gas at critical temperature and pressure per mole.
Symbol: Vm,c
Measurement: Molar Magnetic SusceptibilityUnit: m³/mol
Note: Value can be positive or negative.
Reduced Molar Volume
Reduced Molar Volume of a fluid is computed from the ideal gas law at the substance's critical pressure and temperature per mole.
Symbol: Vm,r
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Peng–Robinson Parameter b
Peng–Robinson parameter b is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: bPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Critical Pressure
Critical Pressure is the minimum pressure required to liquify a substance at the critical temperature.
Symbol: Pc
Measurement: PressureUnit: Pa
Note: Value should be greater than 0.
Reduced Pressure
Reduced Pressure is the ratio of the actual pressure of the fluid to its critical pressure. It is dimensionless.
Symbol: Pr
Measurement: NAUnit: Unitless
Note: Value should be between 0 to 1.
Peng–Robinson Parameter a
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: aPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Universal gas constant
Universal gas constant is a fundamental physical constant that appears in the ideal gas law, relating the pressure, volume, and temperature of an ideal gas.
Symbol: [R]
Value: 8.31446261815324

Other Formulas to find α-function

​Go Peng Robinson Alpha-Function using Peng Robinson Equation
α=(([R]TVm-bPR)-p)(Vm2)+(2bPRVm)-(bPR2)aPR
​Go Alpha-function for Peng Robinson Equation of state given Reduced Temperature
α=(1+k(1-Tr))2

Other formulas in Peng Robinson Model of Real Gas category

​Go Pressure of Real Gas using Peng Robinson Equation
p=([R]TVm-bPR)-(aPRα(Vm2)+(2bPRVm)-(bPR2))
​Go Pressure of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
p=([R](TrTc)(Vm,rVm,c)-bPR)-(aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))

How to Evaluate Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters?

Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters evaluator uses α-function = ((([R]*(Critical Temperature*Reduced Temperature))/((Critical Molar Volume*Reduced Molar Volume)-Peng–Robinson Parameter b))-(Critical Pressure*Reduced Pressure))*(((Critical Molar Volume*Reduced Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Critical Molar Volume*Reduced Molar Volume))-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter a to evaluate the α-function, The Peng Robinson alpha-function using Peng Robinson equation given reduced and critical parameters formula is defined as a function of temperature and the acentric factor. α-function is denoted by α symbol.

How to evaluate Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters using this online evaluator? To use this online evaluator for Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters, enter Critical Temperature (Tc), Reduced Temperature (Tr), Critical Molar Volume (Vm,c), Reduced Molar Volume (Vm,r), Peng–Robinson Parameter b (bPR), Critical Pressure (Pc), Reduced Pressure (Pr) & Peng–Robinson Parameter a (aPR) and hit the calculate button.

FAQs on Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters

What is the formula to find Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters?
The formula of Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters is expressed as α-function = ((([R]*(Critical Temperature*Reduced Temperature))/((Critical Molar Volume*Reduced Molar Volume)-Peng–Robinson Parameter b))-(Critical Pressure*Reduced Pressure))*(((Critical Molar Volume*Reduced Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Critical Molar Volume*Reduced Molar Volume))-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter a. Here is an example- 7E+7 = ((([R]*(647*10))/((11.5*11.2)-0.12))-(218*3.675E-05))*(((11.5*11.2)^2)+(2*0.12*(11.5*11.2))-(0.12^2))/0.1.
How to calculate Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters?
With Critical Temperature (Tc), Reduced Temperature (Tr), Critical Molar Volume (Vm,c), Reduced Molar Volume (Vm,r), Peng–Robinson Parameter b (bPR), Critical Pressure (Pc), Reduced Pressure (Pr) & Peng–Robinson Parameter a (aPR) we can find Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters using the formula - α-function = ((([R]*(Critical Temperature*Reduced Temperature))/((Critical Molar Volume*Reduced Molar Volume)-Peng–Robinson Parameter b))-(Critical Pressure*Reduced Pressure))*(((Critical Molar Volume*Reduced Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Critical Molar Volume*Reduced Molar Volume))-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter a. This formula also uses Universal gas constant .
What are the other ways to Calculate α-function?
Here are the different ways to Calculate α-function-
  • α-function=((([R]*Temperature)/(Molar Volume-Peng–Robinson Parameter b))-Pressure)*((Molar Volume^2)+(2*Peng–Robinson Parameter b*Molar Volume)-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter aOpenImg
  • α-function=(1+Pure Component Parameter*(1-sqrt(Reduced Temperature)))^2OpenImg
  • α-function=(1+Pure Component Parameter*(1-sqrt(Temperature/Critical Temperature)))^2OpenImg
Copied!