Fx Copy
LaTeX Copy
α-function is a function of temperature and the acentric factor. Check FAQs
α=(([R]TVm-bPR)-p)(Vm2)+(2bPRVm)-(bPR2)aPR
α - α-function?T - Temperature?Vm - Molar Volume?bPR - Peng–Robinson Parameter b?p - Pressure?aPR - Peng–Robinson Parameter a?[R] - Universal gas constant?

Peng Robinson Alpha-Function using Peng Robinson Equation Example

With values
With units
Only example

Here is how the Peng Robinson Alpha-Function using Peng Robinson Equation equation looks like with Values.

Here is how the Peng Robinson Alpha-Function using Peng Robinson Equation equation looks like with Units.

Here is how the Peng Robinson Alpha-Function using Peng Robinson Equation equation looks like.

-3896112.0707Edit=((8.314585Edit22.4Edit-0.12Edit)-800Edit)(22.4Edit2)+(20.12Edit22.4Edit)-(0.12Edit2)0.1Edit
You are here -
HomeIcon Home » Category Chemistry » Category Kinetic Theory of Gases » Category Real Gas » fx Peng Robinson Alpha-Function using Peng Robinson Equation

Peng Robinson Alpha-Function using Peng Robinson Equation Solution

Follow our step by step solution on how to calculate Peng Robinson Alpha-Function using Peng Robinson Equation?

FIRST Step Consider the formula
α=(([R]TVm-bPR)-p)(Vm2)+(2bPRVm)-(bPR2)aPR
Next Step Substitute values of Variables
α=(([R]85K22.4m³/mol-0.12)-800Pa)(22.4m³/mol2)+(20.1222.4m³/mol)-(0.122)0.1
Next Step Substitute values of Constants
α=((8.314585K22.4m³/mol-0.12)-800Pa)(22.4m³/mol2)+(20.1222.4m³/mol)-(0.122)0.1
Next Step Prepare to Evaluate
α=((8.31458522.4-0.12)-800)(22.42)+(20.1222.4)-(0.122)0.1
Next Step Evaluate
α=-3896112.07072938
LAST Step Rounding Answer
α=-3896112.0707

Peng Robinson Alpha-Function using Peng Robinson Equation Formula Elements

Variables
Constants
α-function
α-function is a function of temperature and the acentric factor.
Symbol: α
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Temperature
Temperature is the degree or intensity of heat present in a substance or object.
Symbol: T
Measurement: TemperatureUnit: K
Note: Value can be positive or negative.
Molar Volume
Molar Volume is the volume occupied by one mole of a real gas at standard temperature and pressure.
Symbol: Vm
Measurement: Molar Magnetic SusceptibilityUnit: m³/mol
Note: Value can be positive or negative.
Peng–Robinson Parameter b
Peng–Robinson parameter b is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: bPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Pressure
Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed.
Symbol: p
Measurement: PressureUnit: Pa
Note: Value can be positive or negative.
Peng–Robinson Parameter a
Peng–Robinson parameter a is an empirical parameter characteristic to equation obtained from Peng–Robinson model of real gas.
Symbol: aPR
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Universal gas constant
Universal gas constant is a fundamental physical constant that appears in the ideal gas law, relating the pressure, volume, and temperature of an ideal gas.
Symbol: [R]
Value: 8.31446261815324

Other Formulas to find α-function

​Go Peng Robinson Alpha-Function using Peng Robinson Equation given Reduced and Critical Parameters
α=(([R](TcTr)(Vm,cVm,r)-bPR)-(PcPr))((Vm,cVm,r)2)+(2bPR(Vm,cVm,r))-(bPR2)aPR
​Go Alpha-function for Peng Robinson Equation of state given Reduced Temperature
α=(1+k(1-Tr))2
​Go Alpha-function for Peng Robinson Equation of state given Critical and Actual Temperature
α=(1+k(1-TTc))2

Other formulas in Peng Robinson Model of Real Gas category

​Go Pressure of Real Gas using Peng Robinson Equation
p=([R]TVm-bPR)-(aPRα(Vm2)+(2bPRVm)-(bPR2))
​Go Pressure of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
p=([R](TrTc)(Vm,rVm,c)-bPR)-(aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))
​Go Temperature of Real Gas using Peng Robinson Equation
TCE=(p+((aPRα(Vm2)+(2bPRVm)-(bPR2))))(Vm-bPR[R])
​Go Temperature of Real Gas using Peng Robinson Equation given Reduced and Critical Parameters
T=((PrPc)+((aPRα((Vm,rVm,c)2)+(2bPR(Vm,rVm,c))-(bPR2))))((Vm,rVm,c)-bPR[R])

How to Evaluate Peng Robinson Alpha-Function using Peng Robinson Equation?

Peng Robinson Alpha-Function using Peng Robinson Equation evaluator uses α-function = ((([R]*Temperature)/(Molar Volume-Peng–Robinson Parameter b))-Pressure)*((Molar Volume^2)+(2*Peng–Robinson Parameter b*Molar Volume)-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter a to evaluate the α-function, The Peng Robinson alpha-function using Peng Robinson equation formula is defined as a function of temperature and the acentric factor. α-function is denoted by α symbol.

How to evaluate Peng Robinson Alpha-Function using Peng Robinson Equation using this online evaluator? To use this online evaluator for Peng Robinson Alpha-Function using Peng Robinson Equation, enter Temperature (T), Molar Volume (Vm), Peng–Robinson Parameter b (bPR), Pressure (p) & Peng–Robinson Parameter a (aPR) and hit the calculate button.

FAQs on Peng Robinson Alpha-Function using Peng Robinson Equation

What is the formula to find Peng Robinson Alpha-Function using Peng Robinson Equation?
The formula of Peng Robinson Alpha-Function using Peng Robinson Equation is expressed as α-function = ((([R]*Temperature)/(Molar Volume-Peng–Robinson Parameter b))-Pressure)*((Molar Volume^2)+(2*Peng–Robinson Parameter b*Molar Volume)-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter a. Here is an example- -3922866.788092 = ((([R]*85)/(22.4-0.12))-800)*((22.4^2)+(2*0.12*22.4)-(0.12^2))/0.1.
How to calculate Peng Robinson Alpha-Function using Peng Robinson Equation?
With Temperature (T), Molar Volume (Vm), Peng–Robinson Parameter b (bPR), Pressure (p) & Peng–Robinson Parameter a (aPR) we can find Peng Robinson Alpha-Function using Peng Robinson Equation using the formula - α-function = ((([R]*Temperature)/(Molar Volume-Peng–Robinson Parameter b))-Pressure)*((Molar Volume^2)+(2*Peng–Robinson Parameter b*Molar Volume)-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter a. This formula also uses Universal gas constant .
What are the other ways to Calculate α-function?
Here are the different ways to Calculate α-function-
  • α-function=((([R]*(Critical Temperature*Reduced Temperature))/((Critical Molar Volume*Reduced Molar Volume)-Peng–Robinson Parameter b))-(Critical Pressure*Reduced Pressure))*(((Critical Molar Volume*Reduced Molar Volume)^2)+(2*Peng–Robinson Parameter b*(Critical Molar Volume*Reduced Molar Volume))-(Peng–Robinson Parameter b^2))/Peng–Robinson Parameter aOpenImg
  • α-function=(1+Pure Component Parameter*(1-sqrt(Reduced Temperature)))^2OpenImg
  • α-function=(1+Pure Component Parameter*(1-sqrt(Temperature/Critical Temperature)))^2OpenImg
Copied!