Fx Copy
LaTeX Copy
The Nusselt Number is the ratio of convective to conductive heat transfer at a boundary in a fluid. Convection includes both advection and diffusion. Check FAQs
Nu=((0.664)((ReL)0.5)((PrL)13))
Nu - Nusselt Number?ReL - Laminar Reynolds Number?PrL - Laminar Prandtl Number?

Nusselt Number using Blasius Similarity Example

With values
With units
Only example

Here is how the Nusselt Number using Blasius Similarity equation looks like with Values.

Here is how the Nusselt Number using Blasius Similarity equation looks like with Units.

Here is how the Nusselt Number using Blasius Similarity equation looks like.

47.7464Edit=((0.664)((6000Edit)0.5)((0.8Edit)13))
You are here -
HomeIcon Home » Category Physics » Category Mechanical » Category Heat and Mass Transfer » fx Nusselt Number using Blasius Similarity

Nusselt Number using Blasius Similarity Solution

Follow our step by step solution on how to calculate Nusselt Number using Blasius Similarity?

FIRST Step Consider the formula
Nu=((0.664)((ReL)0.5)((PrL)13))
Next Step Substitute values of Variables
Nu=((0.664)((6000)0.5)((0.8)13))
Next Step Prepare to Evaluate
Nu=((0.664)((6000)0.5)((0.8)13))
Next Step Evaluate
Nu=47.7463708467053
LAST Step Rounding Answer
Nu=47.7464

Nusselt Number using Blasius Similarity Formula Elements

Variables
Nusselt Number
The Nusselt Number is the ratio of convective to conductive heat transfer at a boundary in a fluid. Convection includes both advection and diffusion.
Symbol: Nu
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.
Laminar Reynolds Number
Laminar Reynolds Number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities.
Symbol: ReL
Measurement: NAUnit: Unitless
Note: Value should be less than 200000.
Laminar Prandtl Number
Laminar Prandtl Number is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity.
Symbol: PrL
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.59.

Other Formulas to find Nusselt Number

​Go Nusselt number for constant wall temperature
Nu=0.332(Re0.5)(Pr0.333)
​Go Nusselt number if heating starts from distance Xo from leading edge
Nu=0.332(Rex0.5)(Pr0.333)(1-(xox)0.75)-0.333
​Go Nusselt number for liquid metals and for silicones
Nu=0.3387(Re0.5)(Pr0.333)(1+(0.0468Pr)0.67)0.25
​Go Nusselt number for liquid metals only
Nu=0.565(RePr)0.5

Other formulas in Laminar Flow category

​Go Hydrodynamic boundary layer thickness at distance X from leading edge
𝛿hx=5xRex-0.5
​Go Thermal boundary layer thickness at distance X from leading edge
𝛿Tx=𝛿hxPr-0.333
​Go Displacement thickness
𝛿d=𝛿hx3
​Go Momentum thickness
θ=𝛿hx7

How to Evaluate Nusselt Number using Blasius Similarity?

Nusselt Number using Blasius Similarity evaluator uses Nusselt Number = ((0.664)*((Laminar Reynolds Number)^(0.5))*((Laminar Prandtl Number)^(1/3))) to evaluate the Nusselt Number, Nusselt Number using Blasius Similarity formula is defined as a dimensionless value that characterizes the convective heat transfer between a fluid and a flat plate, providing a measure of the heat transfer coefficient in relation to the flow properties and plate characteristics. Nusselt Number is denoted by Nu symbol.

How to evaluate Nusselt Number using Blasius Similarity using this online evaluator? To use this online evaluator for Nusselt Number using Blasius Similarity, enter Laminar Reynolds Number (ReL) & Laminar Prandtl Number (PrL) and hit the calculate button.

FAQs on Nusselt Number using Blasius Similarity

What is the formula to find Nusselt Number using Blasius Similarity?
The formula of Nusselt Number using Blasius Similarity is expressed as Nusselt Number = ((0.664)*((Laminar Reynolds Number)^(0.5))*((Laminar Prandtl Number)^(1/3))). Here is an example- 47.74637 = ((0.664)*((6000)^(0.5))*((0.8)^(1/3))).
How to calculate Nusselt Number using Blasius Similarity?
With Laminar Reynolds Number (ReL) & Laminar Prandtl Number (PrL) we can find Nusselt Number using Blasius Similarity using the formula - Nusselt Number = ((0.664)*((Laminar Reynolds Number)^(0.5))*((Laminar Prandtl Number)^(1/3))).
What are the other ways to Calculate Nusselt Number?
Here are the different ways to Calculate Nusselt Number-
  • Nusselt Number=0.332*(Reynolds Number^0.5)*(Prandtl Number^0.333)OpenImg
  • Nusselt Number=0.332*(Reynolds Number(x)^0.5)*(Prandtl Number^0.333)*(1-(Leading Edge Distance/Distance from Point to YY Axis)^0.75)^(-0.333)OpenImg
  • Nusselt Number=(0.3387*(Reynolds Number^0.5)*(Prandtl Number^0.333))/((1+(0.0468/Prandtl Number)^(0.67))^0.25)OpenImg
Copied!