Fx Copy
LaTeX Copy
Molar Volume is the volume occupied by one mole of a real gas at standard temperature and pressure. Check FAQs
Vm=([R]Tp)(1+((9Pr128Tr)(1-(6(Tr2)))))
Vm - Molar Volume?T - Temperature?p - Pressure?Pr - Reduced Pressure?Tr - Reduced Temperature?[R] - Universal gas constant?

Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters Example

With values
With units
Only example

Here is how the Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters equation looks like with Values.

Here is how the Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters equation looks like with Units.

Here is how the Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters equation looks like.

0.8834Edit=(8.314585Edit800Edit)(1+((93.7E-5Edit12810Edit)(1-(6(10Edit2)))))
You are here -
HomeIcon Home » Category Chemistry » Category Kinetic Theory of Gases » Category Real Gas » fx Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters

Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters Solution

Follow our step by step solution on how to calculate Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters?

FIRST Step Consider the formula
Vm=([R]Tp)(1+((9Pr128Tr)(1-(6(Tr2)))))
Next Step Substitute values of Variables
Vm=([R]85K800Pa)(1+((93.7E-512810)(1-(6(102)))))
Next Step Substitute values of Constants
Vm=(8.314585K800Pa)(1+((93.7E-512810)(1-(6(102)))))
Next Step Prepare to Evaluate
Vm=(8.314585800)(1+((93.7E-512810)(1-(6(102)))))
Next Step Evaluate
Vm=0.883411867754641m³/mol
LAST Step Rounding Answer
Vm=0.8834m³/mol

Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters Formula Elements

Variables
Constants
Molar Volume
Molar Volume is the volume occupied by one mole of a real gas at standard temperature and pressure.
Symbol: Vm
Measurement: Molar Magnetic SusceptibilityUnit: m³/mol
Note: Value can be positive or negative.
Temperature
Temperature is the degree or intensity of heat present in a substance or object.
Symbol: T
Measurement: TemperatureUnit: K
Note: Value can be positive or negative.
Pressure
Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed.
Symbol: p
Measurement: PressureUnit: Pa
Note: Value can be positive or negative.
Reduced Pressure
Reduced Pressure is the ratio of the actual pressure of the fluid to its critical pressure. It is dimensionless.
Symbol: Pr
Measurement: NAUnit: Unitless
Note: Value should be between 0 to 1.
Reduced Temperature
Reduced Temperature is the ratio of the actual temperature of the fluid to its critical temperature. It is dimensionless.
Symbol: Tr
Measurement: NAUnit: Unitless
Note: Value should be greater than 0.
Universal gas constant
Universal gas constant is a fundamental physical constant that appears in the ideal gas law, relating the pressure, volume, and temperature of an ideal gas.
Symbol: [R]
Value: 8.31446261815324

Other Formulas to find Molar Volume

​Go Molar Volume of Real Gas using Berthelot Equation
Vm=(1p)+(b[R]T)(1[R]T)-(Ta)
​Go Molar Volume using Modified Berthelot Equation given Critical and Actual Parameters
Vm=([R]Tp)(1+((9pPc128TTc)(1-(6T2Tc2))))
​Go Molar Volume of Real Gas using Berthelot Equation given Critical and Reduced Parameters
Vm=(1PrPc)+(b[R](TrTc))(1[R](TrTc))-(TrTca)
​Go Molar Volume using Modified Berthelot Equation given Critical and Reduced Parameters
Vm=([R]TrTcPrPc)(1+((9PrPcPc128TrTcTc)(1-(6(TrTc)2Tc2))))

Other formulas in Berthelot and Modified Berthelot Model of Real Gas category

​Go Pressure of Real Gas using Berthelot Equation
p=([R]TVm-b)-(aT(Vm2))
​Go Temperature of Real Gas using Berthelot Equation
T=p+(aVm)[R]Vm-b
​Go Berthelot Parameter of Real Gas
a=(([R]TVm-b)-p)(T(Vm2))
​Go Berthelot parameter b of Real Gas
b=Vm-([R]Tp+(aT(Vm2)))

How to Evaluate Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters?

Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters evaluator uses Molar Volume = ([R]*Temperature/Pressure)*(1+(((9*Reduced Pressure)/(128*Reduced Temperature))*(1-(6/((Reduced Temperature^2)))))) to evaluate the Molar Volume, The Molar Volume using Modified Berthelot equation given reduced and actual parameters formula is defined as the volume occupied by one mole of a substance which can be a chemical element or a chemical compound at Standard Temperature and Pressure. Molar Volume is denoted by Vm symbol.

How to evaluate Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters using this online evaluator? To use this online evaluator for Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters, enter Temperature (T), Pressure (p), Reduced Pressure (Pr) & Reduced Temperature (Tr) and hit the calculate button.

FAQs on Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters

What is the formula to find Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters?
The formula of Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters is expressed as Molar Volume = ([R]*Temperature/Pressure)*(1+(((9*Reduced Pressure)/(128*Reduced Temperature))*(1-(6/((Reduced Temperature^2)))))). Here is an example- 0.883412 = ([R]*85/800)*(1+(((9*3.675E-05)/(128*10))*(1-(6/((10^2)))))).
How to calculate Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters?
With Temperature (T), Pressure (p), Reduced Pressure (Pr) & Reduced Temperature (Tr) we can find Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters using the formula - Molar Volume = ([R]*Temperature/Pressure)*(1+(((9*Reduced Pressure)/(128*Reduced Temperature))*(1-(6/((Reduced Temperature^2)))))). This formula also uses Universal gas constant .
What are the other ways to Calculate Molar Volume?
Here are the different ways to Calculate Molar Volume-
  • Molar Volume=((1/Pressure)+(Berthelot Parameter b/([R]*Temperature)))/((1/([R]*Temperature))-(Temperature/Berthelot Parameter a))OpenImg
  • Molar Volume=([R]*Temperature/Pressure)*(1+(((9*Pressure/Critical Pressure)/(128*Temperature/Critical Temperature))*(1-(6/((Temperature^2)/(Critical Temperature^2))))))OpenImg
  • Molar Volume=((1/(Reduced Pressure*Critical Pressure))+(Berthelot Parameter b/([R]*(Reduced Temperature*Critical Temperature))))/((1/([R]*(Reduced Temperature*Critical Temperature)))-((Reduced Temperature*Critical Temperature)/Berthelot Parameter a))OpenImg
Can the Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters be negative?
Yes, the Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters, measured in Molar Magnetic Susceptibility can be negative.
Which unit is used to measure Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters?
Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters is usually measured using the Cubic Meter per Mole[m³/mol] for Molar Magnetic Susceptibility. are the few other units in which Molar Volume using Modified Berthelot Equation given Reduced and Actual Parameters can be measured.
Copied!