Fx Copy
LaTeX Copy
Long Edge of Pentagonal Icositetrahedron is the length of longest edge which is the top edge of the axial-symmetric pentagonal faces of Pentagonal Icositetrahedron. Check FAQs
le(Long)=[Tribonacci_C]+12(322(5[Tribonacci_C]-1)(4[Tribonacci_C])-3RA/V11([Tribonacci_C]-4)2((20[Tribonacci_C])-37))
le(Long) - Long Edge of Pentagonal Icositetrahedron?RA/V - SA:V of Pentagonal Icositetrahedron?[Tribonacci_C] - Tribonacci constant?[Tribonacci_C] - Tribonacci constant?[Tribonacci_C] - Tribonacci constant?[Tribonacci_C] - Tribonacci constant?[Tribonacci_C] - Tribonacci constant?

Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio Example

With values
With units
Only example

Here is how the Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio equation looks like with Values.

Here is how the Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio equation looks like with Units.

Here is how the Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio equation looks like.

7.2777Edit=1.8393+12(322(51.8393-1)(41.8393)-30.3Edit11(1.8393-4)2((201.8393)-37))
You are here -

Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio Solution

Follow our step by step solution on how to calculate Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio?

FIRST Step Consider the formula
le(Long)=[Tribonacci_C]+12(322(5[Tribonacci_C]-1)(4[Tribonacci_C])-3RA/V11([Tribonacci_C]-4)2((20[Tribonacci_C])-37))
Next Step Substitute values of Variables
le(Long)=[Tribonacci_C]+12(322(5[Tribonacci_C]-1)(4[Tribonacci_C])-30.3m⁻¹11([Tribonacci_C]-4)2((20[Tribonacci_C])-37))
Next Step Substitute values of Constants
le(Long)=1.8393+12(322(51.8393-1)(41.8393)-30.3m⁻¹11(1.8393-4)2((201.8393)-37))
Next Step Prepare to Evaluate
le(Long)=1.8393+12(322(51.8393-1)(41.8393)-30.311(1.8393-4)2((201.8393)-37))
Next Step Evaluate
le(Long)=7.27767962134648m
LAST Step Rounding Answer
le(Long)=7.2777m

Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio Formula Elements

Variables
Constants
Functions
Long Edge of Pentagonal Icositetrahedron
Long Edge of Pentagonal Icositetrahedron is the length of longest edge which is the top edge of the axial-symmetric pentagonal faces of Pentagonal Icositetrahedron.
Symbol: le(Long)
Measurement: LengthUnit: m
Note: Value should be greater than 0.
SA:V of Pentagonal Icositetrahedron
SA:V of Pentagonal Icositetrahedron is what part of or fraction of the total volume of Pentagonal Icositetrahedron is the total surface area.
Symbol: RA/V
Measurement: Reciprocal LengthUnit: m⁻¹
Note: Value should be greater than 0.
Tribonacci constant
Tribonacci constant is the limit of the ratio of the nth term to the (n-1)th term of the Tribonacci sequence as n approaches infinity.
Symbol: [Tribonacci_C]
Value: 1.839286755214161
Tribonacci constant
Tribonacci constant is the limit of the ratio of the nth term to the (n-1)th term of the Tribonacci sequence as n approaches infinity.
Symbol: [Tribonacci_C]
Value: 1.839286755214161
Tribonacci constant
Tribonacci constant is the limit of the ratio of the nth term to the (n-1)th term of the Tribonacci sequence as n approaches infinity.
Symbol: [Tribonacci_C]
Value: 1.839286755214161
Tribonacci constant
Tribonacci constant is the limit of the ratio of the nth term to the (n-1)th term of the Tribonacci sequence as n approaches infinity.
Symbol: [Tribonacci_C]
Value: 1.839286755214161
Tribonacci constant
Tribonacci constant is the limit of the ratio of the nth term to the (n-1)th term of the Tribonacci sequence as n approaches infinity.
Symbol: [Tribonacci_C]
Value: 1.839286755214161
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Long Edge of Pentagonal Icositetrahedron

​Go Long Edge of Pentagonal Icositetrahedron given Short Edge
le(Long)=[Tribonacci_C]+12le(Short)
​Go Long Edge of Pentagonal Icositetrahedron
le(Long)=[Tribonacci_C]+12le(Snub Cube)
​Go Long Edge of Pentagonal Icositetrahedron given Total Surface Area
le(Long)=[Tribonacci_C]+12(TSA3((4[Tribonacci_C])-322((5[Tribonacci_C])-1))14)
​Go Long Edge of Pentagonal Icositetrahedron given Volume
le(Long)=[Tribonacci_C]+12(V13(2((20[Tribonacci_C])-37)11([Tribonacci_C]-4))16)

How to Evaluate Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio?

Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio evaluator uses Long Edge of Pentagonal Icositetrahedron = sqrt([Tribonacci_C]+1)/2*((3*sqrt((22*(5*[Tribonacci_C]-1))/((4*[Tribonacci_C])-3)))/(SA:V of Pentagonal Icositetrahedron*sqrt((11*([Tribonacci_C]-4))/(2*((20*[Tribonacci_C])-37))))) to evaluate the Long Edge of Pentagonal Icositetrahedron, Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio formula is defined as the length of longest edge which is the top edge of the axial-symmetric pentagonal faces of Pentagonal Icositetrahedron, calculated using surface to volume ratio of Pentagonal Icositetrahedron. Long Edge of Pentagonal Icositetrahedron is denoted by le(Long) symbol.

How to evaluate Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio using this online evaluator? To use this online evaluator for Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio, enter SA:V of Pentagonal Icositetrahedron (RA/V) and hit the calculate button.

FAQs on Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio

What is the formula to find Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio?
The formula of Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio is expressed as Long Edge of Pentagonal Icositetrahedron = sqrt([Tribonacci_C]+1)/2*((3*sqrt((22*(5*[Tribonacci_C]-1))/((4*[Tribonacci_C])-3)))/(SA:V of Pentagonal Icositetrahedron*sqrt((11*([Tribonacci_C]-4))/(2*((20*[Tribonacci_C])-37))))). Here is an example- 7.27768 = sqrt([Tribonacci_C]+1)/2*((3*sqrt((22*(5*[Tribonacci_C]-1))/((4*[Tribonacci_C])-3)))/(0.3*sqrt((11*([Tribonacci_C]-4))/(2*((20*[Tribonacci_C])-37))))).
How to calculate Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio?
With SA:V of Pentagonal Icositetrahedron (RA/V) we can find Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio using the formula - Long Edge of Pentagonal Icositetrahedron = sqrt([Tribonacci_C]+1)/2*((3*sqrt((22*(5*[Tribonacci_C]-1))/((4*[Tribonacci_C])-3)))/(SA:V of Pentagonal Icositetrahedron*sqrt((11*([Tribonacci_C]-4))/(2*((20*[Tribonacci_C])-37))))). This formula also uses Tribonacci constant, Tribonacci constant, Tribonacci constant, Tribonacci constant, Tribonacci constant and Square Root (sqrt) function(s).
What are the other ways to Calculate Long Edge of Pentagonal Icositetrahedron?
Here are the different ways to Calculate Long Edge of Pentagonal Icositetrahedron-
  • Long Edge of Pentagonal Icositetrahedron=([Tribonacci_C]+1)/2*Short Edge of Pentagonal IcositetrahedronOpenImg
  • Long Edge of Pentagonal Icositetrahedron=sqrt([Tribonacci_C]+1)/2*Snub Cube Edge of Pentagonal IcositetrahedronOpenImg
  • Long Edge of Pentagonal Icositetrahedron=sqrt([Tribonacci_C]+1)/2*(sqrt(Total Surface Area of Pentagonal Icositetrahedron/3)*(((4*[Tribonacci_C])-3)/(22*((5*[Tribonacci_C])-1)))^(1/4))OpenImg
Can the Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio be negative?
No, the Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio, measured in Length cannot be negative.
Which unit is used to measure Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio?
Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio is usually measured using the Meter[m] for Length. Millimeter[m], Kilometer[m], Decimeter[m] are the few other units in which Long Edge of Pentagonal Icositetrahedron given Surface to Volume Ratio can be measured.
Copied!