Fx Copy
LaTeX Copy
Long Edge of Pentagonal Hexecontahedron is the length of longest edge which is the top edge of the axial-symmetric pentagonal faces of Pentagonal Hexecontahedron. Check FAQs
le(Long)=((V(1-20.47157562)1-20.47157565(1+0.4715756)(2+30.4715756))132+20.4715756)((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))31
le(Long) - Long Edge of Pentagonal Hexecontahedron?V - Volume of Pentagonal Hexecontahedron?[phi] - Golden ratio?[phi] - Golden ratio?[phi] - Golden ratio?

Long Edge of Pentagonal Hexecontahedron given Volume Example

With values
With units
Only example

Here is how the Long Edge of Pentagonal Hexecontahedron given Volume equation looks like with Values.

Here is how the Long Edge of Pentagonal Hexecontahedron given Volume equation looks like with Units.

Here is how the Long Edge of Pentagonal Hexecontahedron given Volume equation looks like.

5.4474Edit=((12000Edit(1-20.47157562)1-20.47157565(1+0.4715756)(2+30.4715756))132+20.4715756)((71.618+2)+(51.618-3)+2(8-31.618))31
You are here -
HomeIcon Home » Category Math » Category Geometry » Category 3D Geometry » fx Long Edge of Pentagonal Hexecontahedron given Volume

Long Edge of Pentagonal Hexecontahedron given Volume Solution

Follow our step by step solution on how to calculate Long Edge of Pentagonal Hexecontahedron given Volume?

FIRST Step Consider the formula
le(Long)=((V(1-20.47157562)1-20.47157565(1+0.4715756)(2+30.4715756))132+20.4715756)((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))31
Next Step Substitute values of Variables
le(Long)=((12000(1-20.47157562)1-20.47157565(1+0.4715756)(2+30.4715756))132+20.4715756)((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))31
Next Step Substitute values of Constants
le(Long)=((12000(1-20.47157562)1-20.47157565(1+0.4715756)(2+30.4715756))132+20.4715756)((71.618+2)+(51.618-3)+2(8-31.618))31
Next Step Prepare to Evaluate
le(Long)=((12000(1-20.47157562)1-20.47157565(1+0.4715756)(2+30.4715756))132+20.4715756)((71.618+2)+(51.618-3)+2(8-31.618))31
Next Step Evaluate
le(Long)=5.44739188997627m
LAST Step Rounding Answer
le(Long)=5.4474m

Long Edge of Pentagonal Hexecontahedron given Volume Formula Elements

Variables
Constants
Functions
Long Edge of Pentagonal Hexecontahedron
Long Edge of Pentagonal Hexecontahedron is the length of longest edge which is the top edge of the axial-symmetric pentagonal faces of Pentagonal Hexecontahedron.
Symbol: le(Long)
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Volume of Pentagonal Hexecontahedron
Volume of Pentagonal Hexecontahedron is the quantity of three dimensional space enclosed by the entire surface of Pentagonal Hexecontahedron.
Symbol: V
Measurement: VolumeUnit:
Note: Value should be greater than 0.
Golden ratio
The Golden ratio occurs when the ratio of two numbers is the same as the ratio of their sum to the larger of the two numbers.
Symbol: [phi]
Value: 1.61803398874989484820458683436563811
Golden ratio
The Golden ratio occurs when the ratio of two numbers is the same as the ratio of their sum to the larger of the two numbers.
Symbol: [phi]
Value: 1.61803398874989484820458683436563811
Golden ratio
The Golden ratio occurs when the ratio of two numbers is the same as the ratio of their sum to the larger of the two numbers.
Symbol: [phi]
Value: 1.61803398874989484820458683436563811
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Long Edge of Pentagonal Hexecontahedron

​Go Long Edge of Pentagonal Hexecontahedron
le(Long)=(le(Short)2+20.4715756)((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))31
​Go Long Edge of Pentagonal Hexecontahedron given Snub Dodecahedron Edge
le(Long)=(le(Snub Dodecahedron)2+2(0.4715756)2+20.4715756)((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))31
​Go Long Edge of Pentagonal Hexecontahedron given Total Surface Area
le(Long)=(TSA(1-20.47157562)30(2+30.4715756)1-0.471575622+20.4715756)((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))31
​Go Long Edge of Pentagonal Hexecontahedron given Midsphere Radius
le(Long)=(rm1+0.47157562(1-20.4715756)2+20.4715756)((7[phi]+2)+(5[phi]-3)+2(8-3[phi]))31

How to Evaluate Long Edge of Pentagonal Hexecontahedron given Volume?

Long Edge of Pentagonal Hexecontahedron given Volume evaluator uses Long Edge of Pentagonal Hexecontahedron = (((Volume of Pentagonal Hexecontahedron*(1-2*0.4715756^2)*sqrt(1-2*0.4715756))/(5*(1+0.4715756)*(2+3*0.4715756)))^(1/3)*sqrt(2+2*0.4715756))*(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi])))/31 to evaluate the Long Edge of Pentagonal Hexecontahedron, Long Edge of Pentagonal Hexecontahedron given Volume formula is defined as the length of longest edge which is the top edge of the axial-symmetric pentagonal faces of Pentagonal Hexecontahedron, calculated using volume of Pentagonal Hexecontahedron. Long Edge of Pentagonal Hexecontahedron is denoted by le(Long) symbol.

How to evaluate Long Edge of Pentagonal Hexecontahedron given Volume using this online evaluator? To use this online evaluator for Long Edge of Pentagonal Hexecontahedron given Volume, enter Volume of Pentagonal Hexecontahedron (V) and hit the calculate button.

FAQs on Long Edge of Pentagonal Hexecontahedron given Volume

What is the formula to find Long Edge of Pentagonal Hexecontahedron given Volume?
The formula of Long Edge of Pentagonal Hexecontahedron given Volume is expressed as Long Edge of Pentagonal Hexecontahedron = (((Volume of Pentagonal Hexecontahedron*(1-2*0.4715756^2)*sqrt(1-2*0.4715756))/(5*(1+0.4715756)*(2+3*0.4715756)))^(1/3)*sqrt(2+2*0.4715756))*(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi])))/31. Here is an example- 5.447392 = (((12000*(1-2*0.4715756^2)*sqrt(1-2*0.4715756))/(5*(1+0.4715756)*(2+3*0.4715756)))^(1/3)*sqrt(2+2*0.4715756))*(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi])))/31.
How to calculate Long Edge of Pentagonal Hexecontahedron given Volume?
With Volume of Pentagonal Hexecontahedron (V) we can find Long Edge of Pentagonal Hexecontahedron given Volume using the formula - Long Edge of Pentagonal Hexecontahedron = (((Volume of Pentagonal Hexecontahedron*(1-2*0.4715756^2)*sqrt(1-2*0.4715756))/(5*(1+0.4715756)*(2+3*0.4715756)))^(1/3)*sqrt(2+2*0.4715756))*(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi])))/31. This formula also uses Golden ratio, Golden ratio, Golden ratio constant(s) and Square Root (sqrt) function(s).
What are the other ways to Calculate Long Edge of Pentagonal Hexecontahedron?
Here are the different ways to Calculate Long Edge of Pentagonal Hexecontahedron-
  • Long Edge of Pentagonal Hexecontahedron=(Short Edge of Pentagonal Hexecontahedron*sqrt(2+2*0.4715756))*(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi])))/31OpenImg
  • Long Edge of Pentagonal Hexecontahedron=(Snub Dodecahedron Edge Pentagonal Hexecontahedron/sqrt(2+2*(0.4715756))*sqrt(2+2*0.4715756))*(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi])))/31OpenImg
  • Long Edge of Pentagonal Hexecontahedron=(sqrt((Total Surface Area of Pentagonal Hexecontahedron*(1-2*0.4715756^2))/(30*(2+3*0.4715756)*sqrt(1-0.4715756^2)))*sqrt(2+2*0.4715756))*(((7*[phi]+2)+(5*[phi]-3)+2*(8-3*[phi])))/31OpenImg
Can the Long Edge of Pentagonal Hexecontahedron given Volume be negative?
No, the Long Edge of Pentagonal Hexecontahedron given Volume, measured in Length cannot be negative.
Which unit is used to measure Long Edge of Pentagonal Hexecontahedron given Volume?
Long Edge of Pentagonal Hexecontahedron given Volume is usually measured using the Meter[m] for Length. Millimeter[m], Kilometer[m], Decimeter[m] are the few other units in which Long Edge of Pentagonal Hexecontahedron given Volume can be measured.
Copied!