Fx Copy
LaTeX Copy
Latus Rectum of Hyperbola is the line segment passing through any of the foci and perpendicular to the transverse axis whose ends are on the Hyperbola. Check FAQs
L=2bpb2-p2
L - Latus Rectum of Hyperbola?b - Semi Conjugate Axis of Hyperbola?p - Focal Parameter of Hyperbola?

Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis Example

With values
With units
Only example

Here is how the Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis equation looks like with Values.

Here is how the Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis equation looks like with Units.

Here is how the Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis equation looks like.

55.0478Edit=212Edit11Edit12Edit2-11Edit2
You are here -

Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis Solution

Follow our step by step solution on how to calculate Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis?

FIRST Step Consider the formula
L=2bpb2-p2
Next Step Substitute values of Variables
L=212m11m12m2-11m2
Next Step Prepare to Evaluate
L=21211122-112
Next Step Evaluate
L=55.0478053110677m
LAST Step Rounding Answer
L=55.0478m

Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis Formula Elements

Variables
Functions
Latus Rectum of Hyperbola
Latus Rectum of Hyperbola is the line segment passing through any of the foci and perpendicular to the transverse axis whose ends are on the Hyperbola.
Symbol: L
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Semi Conjugate Axis of Hyperbola
Semi Conjugate Axis of Hyperbola is half of the tangent from any of the vertices of the Hyperbola and chord to the circle passing through the foci and centered at the center of the Hyperbola.
Symbol: b
Measurement: LengthUnit: m
Note: Value should be greater than 0.
Focal Parameter of Hyperbola
Focal Parameter of Hyperbola is the shortest distance between any of the foci and directrix of the corresponding wing of the Hyperbola.
Symbol: p
Measurement: LengthUnit: m
Note: Value should be greater than 0.
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Latus Rectum of Hyperbola

​Go Latus Rectum of Hyperbola
L=2b2a
​Go Latus Rectum of Hyperbola given Eccentricity and Semi Conjugate Axis
L=(2b)2(e2-1)
​Go Latus Rectum of Hyperbola given Eccentricity and Semi Transverse Axis
L=2a(e2-1)
​Go Latus Rectum of Hyperbola given Linear Eccentricity and Semi Transverse Axis
L=2a((ca)2-1)

Other formulas in Latus Rectum of Hyperbola category

​Go Semi Latus Rectum of Hyperbola
LSemi=b2a
​Go Semi Latus Rectum of Hyperbola given Linear Eccentricity and Semi Conjugate Axis
LSemi=(2b2)2c2-b22
​Go Semi Latus Rectum of Hyperbola given Linear Eccentricity and Semi Transverse Axis
LSemi=a((ca)2-1)
​Go Semi Latus Rectum of Hyperbola given Eccentricity and Semi Transverse Axis
LSemi=a(e2-1)

How to Evaluate Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis?

Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis evaluator uses Latus Rectum of Hyperbola = (2*Semi Conjugate Axis of Hyperbola*Focal Parameter of Hyperbola)/sqrt(Semi Conjugate Axis of Hyperbola^2-Focal Parameter of Hyperbola^2) to evaluate the Latus Rectum of Hyperbola, The Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis formula is defined as the line segment passing through any of the foci and perpendicular to the transverse axis whose ends are on the Hyperbola and is calculated using the focal parameter and semi-conjugate axis of the Hyperbola. Latus Rectum of Hyperbola is denoted by L symbol.

How to evaluate Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis using this online evaluator? To use this online evaluator for Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis, enter Semi Conjugate Axis of Hyperbola (b) & Focal Parameter of Hyperbola (p) and hit the calculate button.

FAQs on Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis

What is the formula to find Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis?
The formula of Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis is expressed as Latus Rectum of Hyperbola = (2*Semi Conjugate Axis of Hyperbola*Focal Parameter of Hyperbola)/sqrt(Semi Conjugate Axis of Hyperbola^2-Focal Parameter of Hyperbola^2). Here is an example- 55.04781 = (2*12*11)/sqrt(12^2-11^2).
How to calculate Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis?
With Semi Conjugate Axis of Hyperbola (b) & Focal Parameter of Hyperbola (p) we can find Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis using the formula - Latus Rectum of Hyperbola = (2*Semi Conjugate Axis of Hyperbola*Focal Parameter of Hyperbola)/sqrt(Semi Conjugate Axis of Hyperbola^2-Focal Parameter of Hyperbola^2). This formula also uses Square Root (sqrt) function(s).
What are the other ways to Calculate Latus Rectum of Hyperbola?
Here are the different ways to Calculate Latus Rectum of Hyperbola-
  • Latus Rectum of Hyperbola=2*(Semi Conjugate Axis of Hyperbola^2)/(Semi Transverse Axis of Hyperbola)OpenImg
  • Latus Rectum of Hyperbola=sqrt((2*Semi Conjugate Axis of Hyperbola)^2*(Eccentricity of Hyperbola^2-1))OpenImg
  • Latus Rectum of Hyperbola=2*Semi Transverse Axis of Hyperbola*(Eccentricity of Hyperbola^2-1)OpenImg
Can the Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis be negative?
No, the Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis, measured in Length cannot be negative.
Which unit is used to measure Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis?
Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis is usually measured using the Meter[m] for Length. Millimeter[m], Kilometer[m], Decimeter[m] are the few other units in which Latus Rectum of Hyperbola given Focal Parameter and Semi Conjugate Axis can be measured.
Copied!