Fx Copy
LaTeX Copy
Interplanar Spacing is the distance between adjacent and parallel planes of the crystal. Check FAQs
d=1((b2)(c2)((sin(α))2)(h2))+((alattice2)(c2)((sin(β))2)(k2))+((alattice2)(b2)((sin(γ))2)(l2))+(2alatticeb(c2)((cos(α)cos(β))-cos(γ))hk)+(2bc(alattice2)((cos(γ)cos(β))-cos(α))lk)+(2alatticec(b2)((cos(α)cos(γ))-cos(β))hl)Vunit cell2
d - Interplanar Spacing?b - Lattice Constant b?c - Lattice Constant c?α - Lattice parameter alpha?h - Miller Index along x-axis?alattice - Lattice Constant a?β - Lattice Parameter Beta?k - Miller Index along y-axis?γ - Lattice Parameter gamma?l - Miller Index along z-axis?Vunit cell - Volume of Unit Cell?

Interplanar Distance in Triclinic Crystal Lattice Example

With values
With units
Only example

Here is how the Interplanar Distance in Triclinic Crystal Lattice equation looks like with Values.

Here is how the Interplanar Distance in Triclinic Crystal Lattice equation looks like with Units.

Here is how the Interplanar Distance in Triclinic Crystal Lattice equation looks like.

0.0154Edit=1((12Edit2)(15Edit2)((sin(30Edit))2)(9Edit2))+((14Edit2)(15Edit2)((sin(35Edit))2)(4Edit2))+((14Edit2)(12Edit2)((sin(38Edit))2)(11Edit2))+(214Edit12Edit(15Edit2)((cos(30Edit)cos(35Edit))-cos(38Edit))9Edit4Edit)+(212Edit15Edit(14Edit2)((cos(38Edit)cos(35Edit))-cos(30Edit))11Edit4Edit)+(214Edit15Edit(12Edit2)((cos(30Edit)cos(38Edit))-cos(35Edit))9Edit11Edit)105Edit2
You are here -
HomeIcon Home » Category Chemistry » Category Solid State Chemistry » Category Inter Planar Distance and Inter Planar Angle » fx Interplanar Distance in Triclinic Crystal Lattice

Interplanar Distance in Triclinic Crystal Lattice Solution

Follow our step by step solution on how to calculate Interplanar Distance in Triclinic Crystal Lattice?

FIRST Step Consider the formula
d=1((b2)(c2)((sin(α))2)(h2))+((alattice2)(c2)((sin(β))2)(k2))+((alattice2)(b2)((sin(γ))2)(l2))+(2alatticeb(c2)((cos(α)cos(β))-cos(γ))hk)+(2bc(alattice2)((cos(γ)cos(β))-cos(α))lk)+(2alatticec(b2)((cos(α)cos(γ))-cos(β))hl)Vunit cell2
Next Step Substitute values of Variables
d=1((12A2)(15A2)((sin(30°))2)(92))+((14A2)(15A2)((sin(35°))2)(42))+((14A2)(12A2)((sin(38°))2)(112))+(214A12A(15A2)((cos(30°)cos(35°))-cos(38°))94)+(212A15A(14A2)((cos(38°)cos(35°))-cos(30°))114)+(214A15A(12A2)((cos(30°)cos(38°))-cos(35°))911)1052
Next Step Convert Units
d=1((1.2E-9m2)(1.5E-9m2)((sin(0.5236rad))2)(92))+((1.4E-9m2)(1.5E-9m2)((sin(0.6109rad))2)(42))+((1.4E-9m2)(1.2E-9m2)((sin(0.6632rad))2)(112))+(21.4E-9m1.2E-9m(1.5E-9m2)((cos(0.5236rad)cos(0.6109rad))-cos(0.6632rad))94)+(21.2E-9m1.5E-9m(1.4E-9m2)((cos(0.6632rad)cos(0.6109rad))-cos(0.5236rad))114)+(21.4E-9m1.5E-9m(1.2E-9m2)((cos(0.5236rad)cos(0.6632rad))-cos(0.6109rad))911)1.1E-282
Next Step Prepare to Evaluate
d=1((1.2E-92)(1.5E-92)((sin(0.5236))2)(92))+((1.4E-92)(1.5E-92)((sin(0.6109))2)(42))+((1.4E-92)(1.2E-92)((sin(0.6632))2)(112))+(21.4E-91.2E-9(1.5E-92)((cos(0.5236)cos(0.6109))-cos(0.6632))94)+(21.2E-91.5E-9(1.4E-92)((cos(0.6632)cos(0.6109))-cos(0.5236))114)+(21.4E-91.5E-9(1.2E-92)((cos(0.5236)cos(0.6632))-cos(0.6109))911)1.1E-282
Next Step Evaluate
d=1.53891539382534E-11m
Next Step Convert to Output's Unit
d=0.0153891539382534nm
LAST Step Rounding Answer
d=0.0154nm

Interplanar Distance in Triclinic Crystal Lattice Formula Elements

Variables
Functions
Interplanar Spacing
Interplanar Spacing is the distance between adjacent and parallel planes of the crystal.
Symbol: d
Measurement: WavelengthUnit: nm
Note: Value should be greater than 0.
Lattice Constant b
The Lattice Constant b refers to the physical dimension of unit cells in a crystal lattice along y-axis.
Symbol: b
Measurement: LengthUnit: A
Note: Value can be positive or negative.
Lattice Constant c
The Lattice Constant c refers to the physical dimension of unit cells in a crystal lattice along z-axis.
Symbol: c
Measurement: LengthUnit: A
Note: Value can be positive or negative.
Lattice parameter alpha
The Lattice parameter alpha is the angle between lattice constants b and c.
Symbol: α
Measurement: AngleUnit: °
Note: Value can be positive or negative.
Miller Index along x-axis
The Miller Index along x-axis form a notation system in crystallography for planes in crystal (Bravais) lattices along the x-direction.
Symbol: h
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Lattice Constant a
The Lattice Constant a refers to the physical dimension of unit cells in a crystal lattice along x-axis.
Symbol: alattice
Measurement: LengthUnit: A
Note: Value can be positive or negative.
Lattice Parameter Beta
The Lattice Parameter Beta is the angle between lattice constants a and c.
Symbol: β
Measurement: AngleUnit: °
Note: Value can be positive or negative.
Miller Index along y-axis
The Miller Index along y-axis form a notation system in crystallography for planes in crystal (Bravais) lattices along the y-direction.
Symbol: k
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Lattice Parameter gamma
The Lattice Parameter gamma is the angle between lattice constants a and b.
Symbol: γ
Measurement: AngleUnit: °
Note: Value can be positive or negative.
Miller Index along z-axis
The Miller Index along z-axis form a notation system in crystallography for planes in crystal (Bravais) lattices along the z-direction.
Symbol: l
Measurement: NAUnit: Unitless
Note: Value can be positive or negative.
Volume of Unit Cell
Volume of Unit Cell is is defined as the space occupied within the boundaries of unit cell.
Symbol: Vunit cell
Measurement: VolumeUnit:
Note: Value should be greater than 0.
sin
Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
Syntax: sin(Angle)
cos
Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
Syntax: cos(Angle)
sqrt
A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
Syntax: sqrt(Number)

Other Formulas to find Interplanar Spacing

​Go Interplanar Distance in Cubic Crystal Lattice
d=a(h2)+(k2)+(l2)
​Go Interplanar Distance in Tetragonal Crystal Lattice
d=1((h2)+(k2)alattice2)+(l2c2)

Other formulas in Inter Planar Distance and Inter Planar Angle category

​Go Interplanar Angle for Simple Cubic System
θ=acos((h1h2)+(k1k2)+(l1l2)(h12)+(k12)+(l12)(h22)+(k22)+(l22))
​Go Interplanar Angle for Orthorhombic System
θ=acos((h1h2alattice2)+(l1l2c2)+(k1k2b2)((h12alattice2)+(k12b2)(l12c2))((h22alattice2)+(k12b2)+(l12c2)))

How to Evaluate Interplanar Distance in Triclinic Crystal Lattice?

Interplanar Distance in Triclinic Crystal Lattice evaluator uses Interplanar Spacing = sqrt(1/((((Lattice Constant b^2)*(Lattice Constant c^2)*((sin(Lattice parameter alpha))^2)*(Miller Index along x-axis^2))+((Lattice Constant a^2)*(Lattice Constant c^2)*((sin(Lattice Parameter Beta))^2)*(Miller Index along y-axis^2))+((Lattice Constant a^2)*(Lattice Constant b^2)*((sin(Lattice Parameter gamma))^2)*(Miller Index along z-axis^2))+(2*Lattice Constant a*Lattice Constant b*(Lattice Constant c^2)*((cos(Lattice parameter alpha)*cos(Lattice Parameter Beta))-cos(Lattice Parameter gamma))*Miller Index along x-axis*Miller Index along y-axis)+(2*Lattice Constant b*Lattice Constant c*(Lattice Constant a^2)*((cos(Lattice Parameter gamma)*cos(Lattice Parameter Beta))-cos(Lattice parameter alpha))*Miller Index along z-axis*Miller Index along y-axis)+(2*Lattice Constant a*Lattice Constant c*(Lattice Constant b^2)*((cos(Lattice parameter alpha)*cos(Lattice Parameter gamma))-cos(Lattice Parameter Beta))*Miller Index along x-axis*Miller Index along z-axis))/(Volume of Unit Cell^2))) to evaluate the Interplanar Spacing, The Interplanar Distance in Triclinic Crystal Lattice, also called Interplanar Spacing is the perpendicular distance between two successive planes on a family (hkl). Interplanar Spacing is denoted by d symbol.

How to evaluate Interplanar Distance in Triclinic Crystal Lattice using this online evaluator? To use this online evaluator for Interplanar Distance in Triclinic Crystal Lattice, enter Lattice Constant b (b), Lattice Constant c (c), Lattice parameter alpha (α), Miller Index along x-axis (h), Lattice Constant a (alattice), Lattice Parameter Beta (β), Miller Index along y-axis (k), Lattice Parameter gamma (γ), Miller Index along z-axis (l) & Volume of Unit Cell (Vunit cell) and hit the calculate button.

FAQs on Interplanar Distance in Triclinic Crystal Lattice

What is the formula to find Interplanar Distance in Triclinic Crystal Lattice?
The formula of Interplanar Distance in Triclinic Crystal Lattice is expressed as Interplanar Spacing = sqrt(1/((((Lattice Constant b^2)*(Lattice Constant c^2)*((sin(Lattice parameter alpha))^2)*(Miller Index along x-axis^2))+((Lattice Constant a^2)*(Lattice Constant c^2)*((sin(Lattice Parameter Beta))^2)*(Miller Index along y-axis^2))+((Lattice Constant a^2)*(Lattice Constant b^2)*((sin(Lattice Parameter gamma))^2)*(Miller Index along z-axis^2))+(2*Lattice Constant a*Lattice Constant b*(Lattice Constant c^2)*((cos(Lattice parameter alpha)*cos(Lattice Parameter Beta))-cos(Lattice Parameter gamma))*Miller Index along x-axis*Miller Index along y-axis)+(2*Lattice Constant b*Lattice Constant c*(Lattice Constant a^2)*((cos(Lattice Parameter gamma)*cos(Lattice Parameter Beta))-cos(Lattice parameter alpha))*Miller Index along z-axis*Miller Index along y-axis)+(2*Lattice Constant a*Lattice Constant c*(Lattice Constant b^2)*((cos(Lattice parameter alpha)*cos(Lattice Parameter gamma))-cos(Lattice Parameter Beta))*Miller Index along x-axis*Miller Index along z-axis))/(Volume of Unit Cell^2))). Here is an example- 1.5E+7 = sqrt(1/((((1.2E-09^2)*(1.5E-09^2)*((sin(0.5235987755982))^2)*(9^2))+((1.4E-09^2)*(1.5E-09^2)*((sin(0.610865238197901))^2)*(4^2))+((1.4E-09^2)*(1.2E-09^2)*((sin(0.66322511575772))^2)*(11^2))+(2*1.4E-09*1.2E-09*(1.5E-09^2)*((cos(0.5235987755982)*cos(0.610865238197901))-cos(0.66322511575772))*9*4)+(2*1.2E-09*1.5E-09*(1.4E-09^2)*((cos(0.66322511575772)*cos(0.610865238197901))-cos(0.5235987755982))*11*4)+(2*1.4E-09*1.5E-09*(1.2E-09^2)*((cos(0.5235987755982)*cos(0.66322511575772))-cos(0.610865238197901))*9*11))/(1.05E-28^2))).
How to calculate Interplanar Distance in Triclinic Crystal Lattice?
With Lattice Constant b (b), Lattice Constant c (c), Lattice parameter alpha (α), Miller Index along x-axis (h), Lattice Constant a (alattice), Lattice Parameter Beta (β), Miller Index along y-axis (k), Lattice Parameter gamma (γ), Miller Index along z-axis (l) & Volume of Unit Cell (Vunit cell) we can find Interplanar Distance in Triclinic Crystal Lattice using the formula - Interplanar Spacing = sqrt(1/((((Lattice Constant b^2)*(Lattice Constant c^2)*((sin(Lattice parameter alpha))^2)*(Miller Index along x-axis^2))+((Lattice Constant a^2)*(Lattice Constant c^2)*((sin(Lattice Parameter Beta))^2)*(Miller Index along y-axis^2))+((Lattice Constant a^2)*(Lattice Constant b^2)*((sin(Lattice Parameter gamma))^2)*(Miller Index along z-axis^2))+(2*Lattice Constant a*Lattice Constant b*(Lattice Constant c^2)*((cos(Lattice parameter alpha)*cos(Lattice Parameter Beta))-cos(Lattice Parameter gamma))*Miller Index along x-axis*Miller Index along y-axis)+(2*Lattice Constant b*Lattice Constant c*(Lattice Constant a^2)*((cos(Lattice Parameter gamma)*cos(Lattice Parameter Beta))-cos(Lattice parameter alpha))*Miller Index along z-axis*Miller Index along y-axis)+(2*Lattice Constant a*Lattice Constant c*(Lattice Constant b^2)*((cos(Lattice parameter alpha)*cos(Lattice Parameter gamma))-cos(Lattice Parameter Beta))*Miller Index along x-axis*Miller Index along z-axis))/(Volume of Unit Cell^2))). This formula also uses Sine (sin)Cosine (cos), Square Root (sqrt) function(s).
What are the other ways to Calculate Interplanar Spacing?
Here are the different ways to Calculate Interplanar Spacing-
  • Interplanar Spacing=Edge Length/sqrt((Miller Index along x-axis^2)+(Miller Index along y-axis^2)+(Miller Index along z-axis^2))OpenImg
  • Interplanar Spacing=sqrt(1/((((Miller Index along x-axis^2)+(Miller Index along y-axis^2))/(Lattice Constant a^2))+((Miller Index along z-axis^2)/(Lattice Constant c^2))))OpenImg
  • Interplanar Spacing=sqrt(1/((((4/3)*((Miller Index along x-axis^2)+(Miller Index along x-axis*Miller Index along y-axis)+(Miller Index along y-axis^2)))/(Lattice Constant a^2))+((Miller Index along z-axis^2)/(Lattice Constant c^2))))OpenImg
Can the Interplanar Distance in Triclinic Crystal Lattice be negative?
No, the Interplanar Distance in Triclinic Crystal Lattice, measured in Wavelength cannot be negative.
Which unit is used to measure Interplanar Distance in Triclinic Crystal Lattice?
Interplanar Distance in Triclinic Crystal Lattice is usually measured using the Nanometer[nm] for Wavelength. Meter[nm], Megameter[nm], Kilometer[nm] are the few other units in which Interplanar Distance in Triclinic Crystal Lattice can be measured.
Copied!